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Preface

This book explores the underlying principles, concepts and techniques of
video content analysis, an exciting and rapidly growing research area with
great potential of causing paradigm shifts in traditional educational,
professional, business, communication and entertainment processes. This
great potential emerges from broadening the scope of possibilities of
handling video. Essentially, the aim is to develop systems that are capable of
“understanding” video, or in other words, that are capable of extracting
information about the content conveyed by the “meaningless” zeros and ones
of the digital video data stream. Examples are automated video-
recommender systems for personalized delivery of television broadcasts in
our homes, the systems providing easy access to the content of vast film and
video archives at broadcasters, museums, industries and production houses,
automated video surveillance systems, the systems enhancing video-based
business communication and, finally, the systems revolutionizing remote
education and e-learning.

Video content analysis is a strongly multidisciplinary research area. The
need for a multidisciplinary approach becomes clear if one realizes that
under the term “digital video” we understand, generally, a multimodal data
stream. This stream typically consists of a visual, audio and text component
each of which carries a part of the content information. Clearly, powerful
techniques for information extraction from images, sounds, speech and text
are required to successfully meet the video interpretation challenge. For this
purpose, the knowledge from the areas of image and audio processing,
speech recognition, “classical” (text) information retrieval and natural
language processing can be applied. Further, because the task of content
interpretation can be seen as a task of assigning the “chunks” of digital video



xii

data to content categories, such as “Alpine landscape”, “Sport highlight”, or
“Excitement”, on the basis of characteristic “patterns” found in the data, the
realization of this task can be approached using the theory and techniques of
pattern classification. Finally, psychology plays an important role in the
process of interpreting video at the affective level, that is, of identifying the
video segments that are “exciting”, “sad” or “happy”.

The topics treated in this book are critical for successfully approaching
the challenge described above. These topics include

Video parsing into shots and semantic content segments,

Video content indexing and representation for browsing and
retrieval,

Affective video content analysis for mood extraction and
personalization of video content delivery.

The first topic considers the problems of low-level and high-level video
parsing. While low-level parsing stands for the detection of elementary
temporal segments in video, or shots, high-level parsing searches for the
boundaries between semantic content segments, which can be seen as shot
aggregates characterized by a coherent story line. The parsing results
provide the basis for the processes belonging to the second topic listed
above, namely, automatically indexing temporal segments of video
according to prespecified content labels. By applying algorithms for
automated indexing of video content and its organization in user-friendly
content browsing and retrieval schemes, the segments corresponding to
“action”, “dialog”, “goal in a soccer match” or “hunt scene in a wildlife
video” can be made easily accessible to the user. The third topic – affective
video content analysis – addresses the theory that aims to extend the
possibilities for content access from the cognitive to the affective level. With
the objective of recognizing emotions and moods that are communicated by
a video toward the user, affective video content analysis is likely to enable
the development of powerful tools for many new application contexts, such
as for personalizing the delivery of video content toward the user.

In the way that is typical for a textbook, this book integrates the existing,
rather fragmented knowledge related to the above topics into a unified and
fundamental theoretical approach that may serve as a guide and inspiration
for conducting further research on video and multimedia content analysis
and retrieval. I wish you a pleasant reading.

Delft, April 2004
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INTRODUCTION

Recent advances in video compression technology, the availability of
affordable digital cameras, high-capacity digital storage media and systems,
as well as growing accessibility to Internet and broadband communication
networks have led to vast popularity of digital video. Not only that digital
video increasingly replaces analog video in various application contexts, but
also the amount of digital video being produced, watched, edited, stored,
broadcasted and exchanged is already phenomenal and quickly growing.

The development described above is enabled by the possibility to process
digital video automatically, either for the purpose of compression, editing,
streaming through a network, or simply for displaying it on a portable
electronic device. The possibilities to process digital video reach, however,
far beyond these tasks. In particular, we could process digital video data with
the objective of extracting the information about the content conveyed by
this data. The algorithms developed for this purpose, referred to as video
content analysis algorithms, could serve as the basis for developing the tools
that would enable us, for instance, to easily access the events, persons and
objects captured by the camera, or to efficiently generate overviews,
summaries and abstracts of large video documents. Figure 1-1 illustrates the
benefits of video content analysis on the example of an algorithm set capable
of recognizing the “chunks” of digital video data showing an “Alpine
landscape”, a “news report on topic T”, the “highlights of a soccer match” or
some “suspicious behavior” detected in a surveillance video, and of making
this selected content easily accessible to the user.

Chapter 1

1.1 VIDEO CONTENT ANALYSIS:
TOWARD A PARADIGM SHIFT
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The availability of algorithms for video content analysis may lead to a
radical paradigm shift in the traditional educational, professional, business,
communication and entertainment processes. In the following we illustrate
the possibilities and consequences of such a shift on a number of typical
application scenarios.

Figure 1-1. Algorithms for video content analysis can be developed to reveal the content
conveyed by digital video data and to make this content easily accessible to the user.

1.1.1 Video broadcasting

With the advent of digital video revolution the television broadcasting
industry is slowly but surely transferring to an end-to-end digital television
production, transmission and delivery chain. Supported by the availability of
broadband communication channels, this transfer will lead to an enormous
increase in the amount of video data reaching our homes. At the same time
the quickly growing capacity-versus-price ratio of digital storage devices is
likely to make such devices highly popular with consumers. A combination
of the abovementioned phenomena will result in an explosion in the
“consumer choice”, that is, in the number of video hours that are
instantaneously accessible to the consumer. This may have crucial
consequences for the ways the broadcasted material is “consumed”. As



INTRODUCTION 3

reported in the study by Durlacher Research Ltd. [Whi00], the understanding
of the broadcasting mechanism may change. This mechanism will only be
something that provides data to the - soon inevitable - home mass storage
system (HMSS) and, as far as the consumer is concerned, the concept of the
“broadcasting channel” will lose its meaning. Further, due to the large
amounts of incoming data, video recording will be performed routinely and
automatically, and programs will be accessed on-demand from the local
storage. Viewing of live TV is therefore likely to drastically diminish with
the time [Whi00].

Figure 1-2. Two major modules of the video-recommender functionality embedded into a
home mass storage system are the video abstraction and personalization modules. On the
basis of the user profile, the incoming video content is filtered, organized and presented to the
user via abstracts.

The challenge of securing the maximum transparency of the recorded
video volume toward the consumer - independent of the volume size – could
be approached by developing video-recommender functionality of a home
mass storage system. As indicated in Figure 1-2, this functionality would
typically contain the following two main algorithmic modules:

Module for automatically abstracting video,

Module for matching the incoming video material with user
preferences.

The purpose of an algorithm for video abstraction in the context of a
video-recommender functionality can be twofold. First, the abstraction
algorithm can be designed to summarize the broadcasted material in order to
facilitate the consumer’s choice of what to watch later on. This may be
highly valuable, for instance, in the process of digesting a large volume of
news television broadcasts and presenting to the user in a compact but



comprehensive way the coverage of all news topics found in the volume.
Alternatively, a video abstraction algorithm can be designed to prune the
recorded video material by keeping the most interesting segments –
highlights - only, and by discarding the remaining, less interesting parts. For
instance, pruning is particularly applicable to sport broadcasts as the events
being worth watching (e.g. goals in soccer, home runs in baseball,
touchdowns in football) are sparse and spread over a long period of time.

The second module, also referred to as the personalized video delivery
module, addresses the problem of storing and organizing the incoming video
material according to the subjective preferences of the consumer. Ideally,
these preferences are stored in the user profile that is acquired in a non-
invasive fashion, that is, without requesting complicated or uncomfortable
actions from the consumer. The systems currently available for personalized
video delivery typically process a video on the basis of textual information
like, in the case of a movie, the genre, cast, director and script. As the user
profile - particularly in the case of a movie - is also largely determined by
the prevailing mood of a movie, then the information about the mood is
likely to enhance the personalization process. For this purpose, an algorithm
could be developed that analyzes the types and intensities of emotions and
moods along a movie, infers the changes in the prevailing mood and then
matches the mood of a particular part of a movie with the current or
preferred mood of the consumer.

4 CHAPTER 1

1.1.2 Video archives

Vast film and video archives exist at broadcasters, museums, industrial
organizations and production houses worldwide, documenting the world’s
cultural, social and political development over the past century, and thus
representing the irreplaceable record of our heritage. With quickly
developing digital technology the tendency grows toward transferring the
content of film and video archives into a digital format. This tendency has a
twofold origin. First, the audiovisual material stored in archives was created
on a wide range of equipment, much of which has become obsolete and
difficult to keep operational. Digitizing the entire material would then
transfer it into a uniform format, viewable on modern digital displaying
equipment. The second reason for digitizing traditional archives is the
“physical” content protection. In many cases the original film- and
videotapes have degraded to the point where the defects due to age and wear
make the replaying quality quite unacceptable. Transferring a film or a video
into a digital format makes it possible to archive it on modern digital storage
media and to restore its quality using the techniques of image, audio and
speech analysis and processing (filtering).
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Once an archive has been digitized, tools for video content analysis may
be used to automatically index the archived material in a content-based way.
This is an efficient solution for making this material easily accessible to a
broad public: many hours of manual work per each hour of video would be
needed otherwise to perform the required content analysis and annotation
steps. Indexed archives can then be connected to digital transmission
networks to make the unique audiovisual records of the past widely available
for informative, educational and entertainment purposes.

1.1.3 Security

The demand for more public safety directly translates to the need for
more extensive surveillance of public places - a demand that can be fulfilled
only by drastically increasing the number of surveillance cameras installed at
relevant locations. Needless to say, the amount of surveillance videos
collected from all these cameras is much larger than what an affordable
number of surveillance officers can analyze to evaluate the safety at a given
place over time.

The scalability problem described above can be solved by using
intelligent surveillance cameras, which are equipped with video content
analysis algorithms. These cameras could detect and recognize suspicious
events autonomously, alert the authorities directly and, in this way, strongly
reduce the need for additional surveillance personnel and related costs.

Figure 1-3. The research area of video content analysis benefits from contributions
originating from a large number of different research fields
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By providing the users with the relevant content information about the
videos stored on the Internet, video content analysis algorithms can make the
Internet video assets better manageable, searchable and reusable. As the
same is applicable for large remote instructional video archives as well, the
employment of video content analysis algorithms is likely to revolutionize
the remote education and e-learning. A typical type of content information
to be generated for an Internet or instructional video is a concise but
comprehensive summary of all topics or thematic units found in a video. By
only downloading these summaries, the user can search for the topic or
thematic unit of interest with maximized efficiency of interaction with the
video collection. Finally, the tools mentioned above can also be used to
record a meeting and to automatically generate the minutes and a video
summary of the main points of the meeting.

Triggered by the great new possibilities, some of which we outlined in
the previous section, a new multidisciplinary research area has emerged
worldwide in the late eighties having as the main objective the development
of algorithms for video content analysis. As illustrated in Figure 1-3, image,
audio and speech signal processing, psychology, pattern classification,
information retrieval, digital signal coding, natural language processing and
statistics are only some examples of many research fields contributing to this
area.

The scientific challenge when developing video content analysis
algorithms is to “bridge the semantic gap” (Figure 1-4), that is, to infer the
content conveyed by the given data set from the representation of that set
available in the form of low-level features. Formally, the semantic gap can
be defined as follows [Sme00]:

1.1.4 Business and education

1.2 TOWARD THE MEANING OF VIDEO DATA:
BRIDGING THE SEMANTIC GAP

Definition 1.1

Semantic gap is the lack of coincidence between the information
that one can extract from the digital data and the interpretation
that the same data has for a user in a given situation.
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Figure 1-4. Semantic gap: The gap between the content conveyed by the data and the low-
level properties of the data

Under the content conveyed by the data we can understand, for instance,
the scenes, events, persons, moods or story contexts that one would actually
perceive when watching a video, that would make one watch a video in the
first place or that would make one remember a video. Low-level features
(further on also referred to as features) are the results of measurements
performed on the data. Examples of features used in the practice of video
content analysis are

color features (e.g. color distribution and color moments),

texture features (e.g. textural energy, contrast, coarseness,
directionality, spectral frequency coefficients, wavelet coefficients,
repetitiveness, complexity, auto-correlation, co-occurrence matrix,
fractal dimension, auto-regressive models, stochastic models),

shape features (e.g. edge statistics, curvature parameters),

audio and speech features (e.g. pitch, frequency spectrum, temporal
signal characteristics, zero-crossing rate, phonemes),
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motion features (e.g. motion direction and intensity, motion field
coherence),

relational features (e.g. directional and topological relationships
between lines, regions or objects).

As already indicated by the Definition 1.1, the content of a given piece of
video is not unique and can be perceived in many different ways. Clearly,
each way of perceiving video content requires a particular type of
information in order to index, classify, filter or organize the video collection
correspondingly. As depicted in Figure 1-5, we differentiate between two
basic levels of video content perception, hence two different levels of
analyzing video content:

Cognitive level,
Affective level.

An algorithm analyzing a video at cognitive level aims at extracting
information that describes the “facts”, e.g., the structure of the story, the
composition of a scene, and the objects and people captured by the camera.
For example, these facts can be represented by the labels such as “a
panorama of San Francisco”, an “outdoor” or “indoor” scene, a broadcast
news report on “Topic T”, a “dialog between person A and person B”, or the
“fast breaks”, “steals” and “scores” of a basketball match.

Figure 1-5. Overview of two different levels of video content perception, analysis and
retrieval



INTRODUCTION 9

Affective video content analysis aims at recognizing affect (e.g. emotions
and moods) in audiovisual data. Typical examples are searching for video
segments characterized by “happiness”, identifying “sad” movie fragments
and looking for the “romantic landscapes”, “sentimental” movie segments,
“movie highlights” or the “most exciting” moments of a sport event. While
an algorithm for extracting affective content could be applied to a video
independent of the algorithms operating at cognitive level, affective video
content analysis may also be employed to refine the results obtained by
analyzing the cognitive aspects of the video content. For instance, assuming
that a cognitive analysis algorithm was used to find video clips showing San
Francisco, re-analyzing these clips at affective level could define subsets of
clips corresponding to “romantic”, “sad” or “most memorable” views on San
Francisco. Further, in view of the discussion in Section 1.1.1, the affective
video content analysis may provide means for enhancing the personalization
module of the recommender functionality of a home mass storage system.

We can define three general groups of video content analysis algorithms,
namely

Video parsing, which stands for temporal segmentation of a video
data stream. It is important to distinguish between low-level parsing,
where video is segmented in elementary temporal units, or shots,
and high-level parsing, where boundaries between shot aggregates
(e.g. movie episodes or news reports) are detected.

Video content indexing, which stands for automatically assigning
“chunks” of video data to prespecified semantic categories. The
links to these categories are established by means of semantic labels,
or indexes, (e.g. “Alpine landscape” or “Happiness”) using which
the corresponding video segments can be retrieved later on.

Video content abstraction and representation, which stands for
building compact but comprehensive abstracts of the video
segments, which were extracted and indexed using the algorithms
described above. The goal here is to efficiently and effectively
communicate the essence of the content of these segments toward
the user.

Clearly, the first group of algorithms aims at detecting the building
blocks of the video content structure, while the algorithms from the second
group aim to identify the blocks with a particular content. The third group of
algorithms build on the results of the parsing and indexing steps and make
the content of the extracted and indexed blocks accessible to the user.



Level of automation:

In order to reach the optimal level of interactivity for the user, a tool
for video content analysis should ideally allow only for as much
interactivity as really necessary in a given application context. For
instance, while a surveillance video system should work fully
automatically, certain freedom should be left to the user of a
consumer video storage device to determine the length of the
extracted movie summary or sport highlight. Then, the level of
automation obtained through the analysis of application
requirements can serve as a fixed parameter in subsequent steps of
optimizing the algorithm performance and efficiency.

Multi-modal information fusion:

We generally refer to video as a composite signal the parts of which
belong to several different modalities. The main modality is the
visual one (picture) and it can be accompanied by an audio stream
and text captions. The audio stream can further consist of music,
speech, environmental noise or any combination of the three. If
different modalities are present, then the video content is likely to be
a function of information conveyed by all of these modalities. Then,
a multi-modal approach to content extraction is necessary, which is
based on the fusion of the information derived from different
modalities. This is, however, not always the case. There are various
examples of video genres where the information conveyed by
certain modalities does not contribute to knowledge inference, and
may even be misleading.

Efficiency and Robustness:

In order to be suitable for implementation in the tools used in
practical applications, video content analysis algorithms need to be
efficient and robust. While the efficiency equals to the speed of the
content extraction process, we define the robustness as the capability
of a content analysis algorithm to perform reliably in the entire
application scope for which it is developed. For instance, an
algorithm for extracting topics from news broadcasts should perform
equally well for any news broadcast.

10 CHAPTER 1

Independent of the type of the algorithm for video content analysis that is
to be developed, a number of crucial issues need to be taken into account
during the process of algorithm development, such as



The objective of this book is to integrate the existing, rather fragmented
knowledge related to various issues in the area of video content analysis into
a unified and fundamental theoretical approach that may serve as a guide and
inspiration for conducting further research in the area. The book covers both
the cognitive and affective aspects of video content analysis, with an implicit
treatment of the issues of automation, multi-modal information fusion,
efficiency and robustness.

The material presented in the book is organized in a bottom-up fashion.
In Chapters 2 and 3 we elaborate on the possibilities for revealing the
temporal content structure of a video document. Once this structure is
known, the concepts discussed in Chapter 4 and 5 can be applied to discover
the content in the building blocks of the structure. Although Chapter 4 and
Chapter 5 both address the problem of video content indexing, we treat its
cognitive (Chapter 4) and affective (Chapter 5) aspects separately.
Furthermore, Chapter 4 also treats the problem of video content abstraction
and representation for retrieval. In the following we give a brief overview of
the content of each chapter.

Figure 1-6. An illustration of the objective of shot-boundary detection

An elementary temporal unit of a video – a shot – can be defined as a
series of interrelated consecutive frames taken contiguously by a single
camera and representing a continuous action in time. Through parsing a
video into shots, the basis is created for a large majority of the video content
analysis algorithms. This parsing is done by detecting the boundaries that

INTRODUCTION 11

1.3 BOOK OBJECTIVE, SCOPE AND OVERVIEW

1.3.1 Overview of Chapter 2
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separate consecutive shots (Figure 1-6). Shot boundaries can either be abrupt
(cuts) or gradual (e.g. dissolves, fades or wipes).

Chapter 2 starts by unraveling the shot-boundary detection problem and
by identifying major issues that need to be considered for securing robust
detection performance. The attribute “robust” is related here to a constant
excellent performance while operating in the “black-box” fashion, that is,
unsupervised and self-adjusting. Then, we develop a theoretical framework
for solving the shot-boundary detection problem in a general case, which
takes into account all issues identified in the beginning of the chapter, and
which is based on the Bayesian decision theory.

Figure 1-7. An illustration of the objective of high-level video parsing

In this chapter we address the problem of high-level video parsing. This
is a content analysis step that is typical for video genres characterized by a
clearly sequential content structure. A video belonging to these genres can
be modeled as a concatenation of separate contexts - semantic segments -
each of which is potentially interesting for retrieval. The aim of an algorithm
for high-level video parsing is then to detect the boundaries between
consecutive semantic segments. Examples of such segments are the reports
in a broadcast news program, the episodes in movies, the topic segments of
documentary programs, or the scenes in a situation comedy.

A semantic segment can be seen as a series of video shots that are related
to each other with respect to their content. We therefore approach the
problem of high-level video parsing by investigating the coherence of the

1.3.2 Overview of Chapter 3
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content along the neighboring video shots, and search for semantic segment
boundaries at the time stamps characterized by sufficiently low content-
coherence values. The objective of high-level video parsing is illustrated in
Figure 1-7.

Chapter 3 starts by explaining the principle of content coherence, and by
introducing the notions of computable content coherence and parsable
video. Then, it is discussed how the content-coherence principle can be
applied in practice and used as the basis for developing robust high-level
video parsing algorithms.

Figure 1-8. An illustration of the idea of video indexing

Subsequent to the parsing steps discussed in the previous two chapters,
two additional steps are required to provide a fast and easy access to the
parsed video material. The first step employs video indexing algorithms that
recognize in a video the segments belonging to prespecified content classes
(Figure 1-8). These classes usually reveal the interest of the user and can be
defined as, for instance, the fast breaks, steals or scores in a basketball
match, the goals and goal chances in a soccer game, the news reports on a
specific topic, the dialogs, actions and story units in a movie or, simply, the
hunt scenes in a wildlife documentary.

1.3.3 Overview of Chapter 4



We conclude this book by looking into a relatively new research
direction in the area of video content analysis - the representation and
modeling of affective video content. The affective content of a given
temporal video segment can be defined as the intensity and type of affect
(emotion, mood) that is expected to arise in the user while watching that
video segment. The availability of methodologies for automatically
extracting this type of video content will extend the current scope of
possibilities for video indexing and retrieval. For instance, we will be able to
search for the funniest or the most thrilling parts of a movie, or the most
exciting events of a sport program (Figure 1-9). Further, as the user may
want to select a movie not only based on its genre, cast, director and story
content, but also on its prevailing mood, the affective content analysis is also
likely to enhance the quality of personalizing the video delivery to the user.

We present in this chapter a computational framework for affective video
content representation and modeling. This framework is based on the
dimensional approach to affect that is known from the field of
psychophysiology. According to this approach, the affective video content
can be represented as a set of points in the 2D affect space, which is
characterized by the dimensions of arousal (intensity of affect) and valence
(type of affect). We map the affective video content onto the 2D affect space
by using the models that link the arousal and valence dimensions to low-
level features extracted from video data. This results in the arousal and
valence time curves that, when considered either separately or combined into
the so-called affect curve, are introduced as reliable representations of
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In the second step, the parsed and indexed video material is brought to
the user by means of video abstracts. An abstract of a temporal video
segment can be seen as a sequence of video frames, possibly with
accompanying audio stream, that shows the essence of the content of that
segment in a compact but comprehensive fashion. Video abstract can be
used to quickly browse through preselected video documents in the search
for the documents of interest.

Video indexing will be introduced in Chapter 4 as a pattern classification
problem. The treatment of this problem will concentrate on fundamental
issues that need to be taken into account when developing robust video
indexing algorithms, and on general classes of pattern classification tools
that can be used for this purpose. Then the possibilities for video abstract
generation will be discussed with the emphasis on compactness, and
comprehensiveness of abstract structure.

1.3.4 Overview of Chapter 5
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expected transitions from one affective state to another along a video, as
perceived by a viewer.

The chapter is completed by an overview of possible applications of
affective video content analysis. In particular, video indexing using affective
labels, highlights extraction and personalized video delivery are addressed.

Figure 1 -9. An illustration of the idea of affective video content analysis
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Chapter 2

DETECTING SHOT BOUNDARIES IN
VIDEO

Parsing a video into its basic temporal units – shots – is considered the
initial step in the process of video content analysis. A shot is a series of
video frames taken by one camera, like, for instance, by zooming in on a
person or an object, or simply by panning along a landscape. Two
consecutive shots are separated by a shot boundary that can be either abrupt
or gradual. While an abrupt shot boundary, or a cut, is generated by simply
attaching one shot to another without modifying them, a gradual shot
boundary is the result of applying an editing effect to merge two shots.
Although these effects are numerous, three of them are used most frequently:

Dissolve,
Fades (fade-in and fade-out),
Wipe.

Figure 2-1 shows an example of a dissolve and a cut appearing one after
each other in a segment of a TV news program. The dissolve effect is
generated by making the first shot darken progressively (fade-out) while at
the same time letting the second shot gradually emerge from black to light
(fade-in, illustrated in Figure 2-2). As a result, the frames belonging to a
dissolve (e.g. frames 4-8 in Figure 2-1) contain a combination of the visual
material originating from both shots. Note that a fade-in of the second shot
can also simply follow a fade-out of the first shot without superimposing the
visual material in modified shot segments. We refer to this effect as fade
group. Finally, the wipe effect involves a line or a pattern that separates the

2.1 INTRODUCTION
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visual material of two shots, and that moves across the frame enabling the
second shot to replace the first one. An illustration of a wipe is given in
Figure 2-3.

The development of shot-boundary detection algorithms has the longest
and richest history in the area of video content analysis. Longest, because
this area was actually initiated by the attempts to automate the detection of
cuts in video, and richest, because a vast majority of all works published in
this area so far address in one way or another the problem of shot-boundary
detection. This is not surprising since detection of shot boundaries provides
the base for nearly all high-level video content analysis approaches, and is,
therefore, one of the major prerequisites for successfully revealing the video
content structure. Moreover, other research areas can also benefit from
automating the shot-boundary detection process. For instance, the efficiency
of video restoration can be improved by comparing each shot with previous
ones and – if a similar shot in terms of visual characteristics is found in the
past – by adopting the restoration settings already used before. Also, in the
process of coloring black-and-white movies the knowledge about shot
boundaries provides time stamps where a switch to a different gray-to-color
look-up table should take place.

Figure 2-1. Three TV News shots. First two shots are separated by a dissolve effect (Frame 4-
8). The second and the third shot are separated by a cut surrounded by frames 10 and 11.
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Figure 2-2. An example of the fade-in effect

The basic assumption when detecting shot boundaries in video is that the
frames surrounding a boundary are, in general, much more different with
respect to their visual content than the frames taken from within a shot. Note
that a cut is surrounded by consecutive frames while a gradual transition is
surrounded by the last unmodified frame from the first shot and the first
unmodified frame of the second shot. For the reason of simplicity we will
further assume that the modified frames in the case of a gradual transition do
not belong to a shot but to the transition only. As we show in Figure 2-4, the
frame n is considered the last frame of the shot i while the frame n+l serves
as the first frame of the shot i+1.

A high coherence of the visual content along the frames belonging to a
shot is expected due to a high frame rate of digital video, which is typically
in the range of 25 to 30 frames a second. Two consecutive frames of a shot
are therefore likely to contain a considerable portion of the same visual
material. This coherence is likely to be disturbed at the end of the shot as,
after the shot boundary, the camera typically switches to another scene that
is visually different from the scene in the frames preceding the boundary
[Rei68].

Based on the above, the problem of detecting shot boundaries may
generally be approached by searching for large discontinuities in the visual-
content flow of a video. To do this, a discontinuity value z(k) needs to be
computed at each frame k to quantify the temporal variations of suitable

2.2 SHOT-BOUNDARY DETECTION:
UNRAVELING THE PROBLEM

2.2.1 Visual content discontinuities
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features of the visual content at the time stamp of that frame. The features
are selected to depict those aspects of the visual content of a video that are
most expressive regarding the appearances of shot boundaries, but that are,
at the same time, rather insensitive to unimportant variations of the visual
content along a shot. In the case of a cut, feature variation at the frame k can
best be computed in relation to the next following frame k+1, as here an
abrupt change in the visual content (and in the corresponding feature values)
can be expected. Consequently, compared to relatively low values of z(k)
measured for the pairs of consecutive frames within a shot, much higher
values of z(k) may be expected when measuring feature variations between
the frames surrounding a cut.

Figure 2-3. An illustration of the wipe effect

In the case of a gradual transition, the editing effect applied to the
transition frames makes these frames visually different compared to the
frames from both before and after the transition. For instance, the frames
belonging to the wipe effect illustrated in Figure 2-3 differ from the frames
surrounding the effect because they contain the portions of the visual
material of both shots. Consequently, the z(k) values that are computed for
the pairs of consecutive frames surrounding the beginning and end time
stamp of the editing effect, will likely be higher than those computed within
a shot. Further, since the rate of the visual content change during the
transition is typically higher than the visual content variations within a shot,
higher discontinuity values are also expected when computed for the pairs of
consecutive frames within the transition. As a result, not one distinguishable
high discontinuity value is obtained like in the case of a cut, but a series of
increased discontinuity values in the duration of the gradual transition.

As the rate of the visual content change across the transition is only
gradual, the z(k) values computed there are typically much lower than those
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computed at cuts. In some cases, they may even not be distinguishable
enough from the discontinuity values measured within a shot. In order to
amplify the value range difference, an option is to compute the discontinuity
values not for the consecutive frames but for the frames with a larger
distance in-between. We will further refer to this distance as inter-frame
skip. Figure 2-4 illustrates the computation of the discontinuity values for the
inter-frame skip being equal to the length of the transition.

Figure 2-4. A gradual transition between two shots and the procedure for computing the
discontinuity values with the inter-frame skip corresponding to the length of the transition

Clearly, obtaining a sufficient value range difference between the
discontinuity values z(k) computed within shots and at shot boundaries is the
major prerequisite for being able to detect the presence of shot boundaries on
the basis of these values, while avoiding the detection errors, that is, missed
or falsely detected boundaries. In the following we will refer to these two
value ranges as and R, respectively. There are, however, many factors
that can disturb the separation of discontinuity value ranges and R. On
the one hand, some special effects (e.g. morphing), screenplay effects (e.g. a
person enters a dark room and turns on the light) and some extreme actions
of a director (e.g. making extremely fast camera movements, pointing with
the camera to a strong light source or to an object moving just in front of the
camera) may cause the discontinuity values measured within a shot to be in
the range that is typical for shot boundaries. An illustration of such an effect
caused by extreme motion captured by the camera is shown in Figure 2-5.
On the other hand, some discontinuity values measured at shot boundaries
may be considerably lower than their typical value range. This may be the
case, for instance, if the visual content of the shots attached to each other is
too similar or if the rate of the content change during a gradual transition is
insufficient.



In view of the discussion in the previous section we may conclude that,
generally, reaching the optimal shot-boundary detection performance is not
possible by only relying on the ranges of discontinuity values. We therefore
introduce two types of additional information that can be used to compensate
for the influence of the disturbing factors mentioned before: discriminative
information and prior information.

Figure 2-5. An illustration of problems regarding value range separation

The discriminative information can help distinguish the temporal
behavior of discontinuity values at or around a particular shot boundary from
the behavior of these values within a shot. In other words, one could match
the temporal pattern created by a number of consecutive discontinuity values
with the temporal pattern that is considered typical for a particular class of
shot boundaries in order to check for the presence of a boundary from this
class at a given time stamp. For instance, the appearance of an extremely
high narrow peak in a series of discontinuity values is a strong indication for
the presence of a cut at the place of the peak. Such peaks can be seen in the
illustration in Figure 2-5. The expected improvement of the detection
performance using this type of discriminative information is clearly a result
of extending the “absolute” knowledge on a discontinuity value (its range)
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2.2.2 Discriminative and prior information
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by the “relative” knowledge on this value with respect to its local
neighborhood. We refer to this class of discriminative information as
structural information.

In our search for other forms of discriminative information we can also
extend the consideration of the features beyond the sole objective of
computing the discontinuity values. It is namely so that some features show
typical behavior when measured in the frames around or within a shot
boundary. For example, since a dissolve is the result of mixing the visual
material from two neighboring shots, it can be expected that the values of
intensity variance measured in the frames of a dissolve ideally reveal a
downwards-parabolic pattern [Ala93]. We can now match this dissolve-
related temporal behavior of the intensity variance with the temporal pattern
generated by the variance values computed across a series of frames in order
to check for the presence of a dissolve. This matching can be done either on
the basis of characteristic pattern parameters, like for instance, w and h, as
illustrated in Figure 2-6, or by using a mathematical model of the parabolic
variance curve that is then fitted to the sequence of computed variance
values. We refer to this class of discriminative information, which is drawn
either from the parameters or a mathematical model of the temporal feature
behavior characteristic for a particular shot boundary, as feature information.

As opposed to the discriminative information, the prior information
indicating the presence or absence of a shot boundary at a certain time stamp
along a video is not based on any direct measurement performed on a video,
but rather on the general knowledge about the temporal structure of the
video. For instance, we could intuitively assume that the probability of a new
shot boundary immediately after the last detected boundary is negligible, but
also that it increases with every further frame.

Figure 2-6. An example method for matching the intensity-variance pattern
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Figure 2-7. General scheme of a shot-boundary detector

After we identified all issues that are to be considered in the process of
shot-boundary detection, the remaining challenge is to integrate these issues
into a unified detection framework. A general scheme of such a framework
is illustrated in Figure 2-7. The core of the framework is the decision module
where it is decided about the presence or absence of a shot boundary at a
given frame k on the basis of three uncorrelated inputs:

2.2.3 Detector structure

Discontinuity values z(k),
Input A(k) based on discriminative information,
Input B(k) based on prior information.

Generally, the inputs into the decision module originating from the
discriminative and prior information can be considered time-dependent, as
represented by the functions A(k) and B(k), respectively. This implies that
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the decision mechanism is also time dependent, resulting in the decision
function R(k). The decision module processes the abovementioned three
inputs and generates the values of the decision function at any given frame k.
In Sections 2.3-2.6 we will discuss each of the four major blocks of the
detector scheme in more detail.

2.3 FEATURE EXTRACTION

The success of shot-boundary detection largely depends on the selection
of features used to represent the visual content flow along a video. As shown
in Figure 2-7, features can be used to model either the discriminative
information or the discontinuities in the visual content flow. In the first case,
a feature needs to show a temporal behavior in or around a shot boundary,
which is clearly distinguishable from its behavior within a shot. The
intensity variance mentioned in Section 2.2.2 is a good example of such a
feature. A feature that is to be used to compute the discontinuity values z(k)
needs to be evaluated with respect to its capability to secure a sufficient
separation of discontinuity value ranges and R.

We will discuss in this section the major classes of features regarding
their suitability to serve for the two purposes mentioned above. We base our
discussion on the surveys on feature extraction for shot-boundary detection
presented in [Aha96], [Bim99], [Fur95] and [Lie99]. Further surveys can be
found in [Idr97], [Man99] and [Lup98].

2.3.1 Pixel intensity

We will assume in general that the discontinuity value z(k) is computed
for the frames k and k+l, with As first proposed by Kikukawa and
Kawafuchi in [Kik92], the simplest way of measuring visual discontinuity
between two frames is to compute the mean absolute intensity change for all
pixels of a frame. If we denote the intensity of the pixel at coordinates (x,y)
by I(x,y) then the absolute intensity change of that pixel between frames k
and k+l is obtained as

The discontinuity value z(k) is then easily computed as the value (2.1)
averaged over all frame pixels, that is, over the frame dimensions X and Y:
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While the above feature is rather simple, it is also highly sensitive to
camera and object motion. To better control the motion sensitivity, Otsuji et
al. [Ots91] suggested to only count the pixels that change considerably from
one frame to another. To do this, the absolute change of the intensity I(x,y) is
first compared with the prespecified threshold T, and is taken into account
by the averaging formula (2.2) only if the measured absolute difference
exceeds the threshold, that is

A further reduction of the motion influence on the discontinuity values
(2.2) can be obtained by following the proposal of Zhang et al. [Zha93], that
is, to apply a 3x3 averaging filter to the frames before performing their
pixel-wise comparison.

The best way of eliminating the influence of motion on the discontinuity
values (2.2) is to perform motion compensation between the frames first, so
that intensity changes are computed for the corresponding pixels. We will
discuss this option in more detail in Section 2.3.5.

Instead of computing pixel-to-pixel intensity differences between two
frames, we could also investigate how the statistics of pixel intensities
change from one frame to another. An approach that can be used for this
purpose is called the likelihood ratio approach [Kas91, Set95]. There, each
of the two frames being compared is divided in regions and then the
discontinuity value between the frames is computed on the basis of changes
in the statistical properties (mean and variance) of the intensities per region.
As here the global region characteristics are compared rather than single
pixels, the robustness of the likelihood ratio approach regarding the noise
induced by motion or illumination changes is somewhat larger than in the
methods discussed before. A potential problem with this approach is that two
different regions may still be similar in terms of their general pixel statistics.

When analyzing the changes in the statistics of pixel intensities from one
frame to another, in parallel with searching for discontinuities we may also
search for the temporal patterns that are typical for this statistics at places of
shot boundaries. And, indeed, the variance of pixel intensities in a video
frame shows a typical downwards-parabolic pattern (Figure 2-6) at places of
dissolves [Ala93, Men95], and the upwards and downwards segments of this
pattern at places of a fade-in and fade-out, respectively [Lie99]. This makes
the pixel intensity variance a suitable feature for generating additional
(discriminative) information for the shot-boundary detector. How this
information can be modeled to provide input in the decision module, will be
explained in Section 2.5.
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2.3.2 Histogram

Another example of a feature that is based on pixel statistics, and that is
frequently used for shot-boundary detection, is a histogram. Consecutive
frames within a shot containing similar visual material will show little
difference in their histograms, compared to the frames surrounding a shot
boundary. Although it can be argued that frames having completely different
visual contents can still have similar histograms, the probability of such a
case is smaller than in the case where general statistical properties (mean and
variance) are used. Since histograms ignore spatial changes within a frame,
histogram differences are considerably more insensitive to object motion
with a constant background than pixel-wise comparisons are. However, a
histogram difference remains sensitive to camera motion, such as panning,
tilting or zooming, due to large portions of new visual content introduced in
each following video frame.

Histograms are used as features mainly for detecting the discontinuities
in the visual content flow. This is done by bin-wise computing the difference
between the histograms of neighboring video frames. Both grey-level and
color histograms can be used, and their differences can be computed by a
number of different metrics. A simple metric is the sum of absolute
differences of corresponding bins. With being the total number of bins,
this can be written as

when comparing grey-level histograms, and

if color histograms are used [Yeo95b]. In (2.4), is the j-th bin of the
grey-value histogram belonging to the frame k. In (2.5), is the j-th bin
of the histogram of the C - component of the color space used.

Another popular metric for histogram comparison is the so-called
[Nag92] that can generally be formulated as
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Zhang et al. [Zha93] reported that the metric (2.6) does not only enhance
the discontinuities across a shot boundary but also the effects caused by
camera/object motion. Therefore, the overall detection performance of (2.6)
is not necessarily better than that from (2.4), whereas it does require more
computational power.

We mention here also the histogram intersection as a further example of
a frequently used metric for histogram similarity computation. The
discontinuity value z(k) can be defined on the basis of this intersection as

A discontinuity in the visual content flow can also be computed as the
difference between the average colors of the histograms of neighboring
video frames. The average color of a histogram H with bins j can be defined
as a vector with the components

Here, C is again a component of the color space used, while c(C, j) is the
value of the component C at the histogram bin j [Haf95].

Gargi et al. [Gar00] have evaluated the cut-detection performance of the
discontinuity values (2.5), (2.6), (2.7) and the one based on the average
histogram color (2.8). The evaluation results show that the performs
significantly worse than other metrics. Bad performance was also obtained
for the discontinuities based on average color (2.8), while the histogram
intersection formula performed best. The abovementioned metrics were
computed in eight different color spaces, including RGB, HSV, YIQ, XYZ,
L*a*b*, L*u*v*, the Munsell system of color notation, and the Opponent
color space [Swa91, Fur95]. Although it was shown that the choice of the
color space for histogram computation has less impact on the detection
performance than the choice of a metric, the tests indicated that the Munsell
color space was the best one, followed by the uniform color spaces L*a*b*
and L*u*v* and the Opponent color space. Interestingly, all color spaces
performed better than the luminance alone (grey-level histograms), which
indicates a high importance of the color content of the video frame in
detecting shot boundaries. While performing best, the Munsell color space
is, however, also computationally most intensive. The L*a*b* color space
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appears to be the best choice if the optimum between the detection
performance and computational cost is searched for.

Histograms can also be computed and compared block-wise. In this case,
both frames k and k+l are divided into blocks, and the histograms and

are computed for blocks and Then, the discontinuity value
z(k) can be found as a sum of block-wise histogram differences. Nagasaka
and Tanaka [Nag92] divide a frame into 16 blocks and discard 8 largest
differences to efficiently reduce the influence of motion and noise. An
alternative to this approach can be found in [Ued91], where the number of
blocks in the frame is increased to 48, and where – as opposed to [Nag92] -
only those block-difference values are considered in the formula for z(k) that
exceed the prespecified threshold T, that is,

with

Otsuji et al. [Ots93] found that the approach from [Ued91] is much more
sensitive to abrupt boundaries than the one proposed in [Nag92]. However,
since emphasis is put on blocks, which change most from one frame to
another, the approach from [Ued91] also becomes highly sensitive to
motion. To eliminate the influence of motion on the values z(k), motion
compensation can be applied to blocks before the method from [Ued91] is
applied. This option will be discussed in more detail in Section 2.3.5.

2.3.3 Edges

Another characteristic feature class that proved to be useful in detecting
shot boundaries is derived from edge statistics of a frame. Two edge-based
features are frequently used in the context of shot-boundary detection:

Edge-change ratio (ECR)
Edge-based contrast (EC)

The edge-change ratio was first proposed by Zabih et al. [Zab95]. The
underlying idea here is that, due to the change in the scene composition from
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one shot to another, the edge set belonging to the objects found in the frames
before the boundary will be different than the edge set of the objects in the
new scene composition. To compute the ECR, first the overall motion
between frames is computed. Based on the motion information, two frames
are registered and the number and position of edges detected in both frames
are compared. The total difference is then expressed as the total edge change
percentage, i.e. the percentage of edges that enter and exit from one frame to
another. Let be the percentage of edge pixels in frame k, for which the
distance to the closest edge pixel in frame k+l is larger than the prespecified
threshold T. In the same way, let be the percentage of edge pixels in
frame k+l, for which the distance to the closest edge pixel in frame k is also
larger than the threshold T. Then, the discontinuity in the visual content flow
based on the edge-change ratio is computed as

An important advantage of the ECR feature is that it can successfully be
applied in the detection of cuts, fades, dissolves and wipes [Zab95, Zab99].
The ECR value (2.11) exhibits namely typical patterns at places of shot
boundaries. While cuts are clearly visible in the ECR time curve as sharp,
highly distinguishable peaks, a series of high ECR values can be seen at
places of gradual transitions. Thereby, the difference between fades on the
one hand and dissolves and wipes on the other, is in the position of the local
maximum of the obtained series of high ECR values. In the case a fade-
in/fade-out this maximum is positioned at the beginning/end of the series. At
dissolves or wipes, the local maximum can be found in the middle of the
ECR value series [Lie99]. Another advantage of the ECR feature is that, due
to the registration of frames prior to edge comparison, this feature is robust
against motion. However, the complexity of computing the discontinuity
values based on ECR is also high. In relation to this, the comparative studies
presented in [Dai95], [Fer99b] and [Lie01b] indicate that the ECR feature,
when employed for cut detection, does not outperform the histogram-based
detection approaches.

The edge-based contrast feature was presented by Lienhart [Lie99] as an
alternative tool for detecting dissolves. Due to the overlap of the visual
material of two consecutive shots, the frames within a dissolve lose their
contrast and sharpness compared to the frames surrounding a dissolve.
Capturing and amplifying this loss is the basic idea behind the EC feature.
Given the edge map L(x,y,k) of the frame k, the threshold for weak and
the higher threshold for strong edges, then the strengths of the strong and
weak edge maps can be obtained using the following set of formulas:
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with

and

Now, the EC value for the frame k is computed as

Because the underlying idea of the EC feature is similar to the one for the
variance of pixel intensities, it is not surprising that a temporal pattern
similar to the one in Figure 2-6 could be expected when computing the EC
value in the frames belonging to a dissolve. In this sense, the EC value can
be seen as an alternative to the intensity variance for generating the
discriminative information for the shot-boundary detector.

2.3.4 Motion field

The features discussed in this section characterize the motion field that is
measured between the neighboring video frames. As the continuity of the
camera or object motion is inherent only in the frames within a shot, we can
assume that a discontinuity in the visual content flow at an abrupt shot
boundary is also characterized by a discontinuity in the motion field. An
example of a feature belonging to this class is motion smoothness [Aku92].
Here, we first compute all motion vectors between the frames k and
k+1and then check their significance by comparing their magnitudes with a
prespecified threshold
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Then, we also take into consideration the frame k+2 and check whether a
motion vector computed between frames k and k+1 significantly differs from
the related motion vector measured between frames k+1 and k+2. This is
done by comparing their absolute difference with a predefined threshold

The sum of the values (2.15a) over all motion vectors is the number of
significant motion vectors between frames k and k+1, and can be understood
as a measure for object/camera activity. Similarly, the sum of values (2.15b)
is the number of motion vectors between frames k and k+1 that are
significantly different from their corresponding vectors computed between
the frames k+1 and k+2, and can be understood as the measure for motion
discontinuity along three consecutive frames of a sequence. Using these two
sums, we can now first compute the motion smoothness at frame k as

and then the discontinuity value at frame k as the inverse of (2.16), that is

The features derived from the motion field of a video are among the most
computationally expensive features discussed in the context of shot-
boundary detection. However, as the motion vectors are available as side
information in MPEG-compressed video data streams, the problem of
increased complexity may be reduced if an MPEG-compressed video serves
directly as input into the video analysis module.
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2.3.5 Motion-compensated features

Regular object and camera motion, where no disturbing factors
mentioned in Section 2.2.1 are involved, account for most of the variations
in the visual content flow along a video. Examples of this type of motion are
simple (and slow) camera panning, camera motion following a moving
object and object motion by a stationary camera. Therefore, selecting the
feature set that reduces or eliminates the motion influence on discontinuity
values is likely to provide a significant contribution to obtaining sufficiently
separated discontinuity value ranges and R. Such feature set may also,
however, contribute to a wide performance constancy of a shot-boundary
detector. Namely, since different video genres can globally be characterized
by specific average magnitudes of object/camera motion (e.g. high-action
movies vs. stationary dramas), eliminating these distinguishing factors may
provide a high level of consistency of ranges and R across different
genres. If the ranges and R are consistent, the parameters of the detector
can first be optimized on a set of training videos to maximize the detection
reliability, and then the shot boundaries can be detected with the same high
reliability in an arbitrary video without any human supervision.

The highest motion independence show the feature extraction approaches
that are based on motion compensation. An example of such a technique was
introduced earlier in the context of computing the edge change ratio (2.11).
This ratio is computed after registering the frames, that is, after eliminating
the changes in the edge structure due to camera motion. Another motion-
compensated feature extraction method is based on a block matching
procedure. This procedure is applied to find for each block in frame k a
corresponding block in frame k+l, such that it is most similar to the
block according to a given criterion (difference formula) D, that is:

Here, is the number of candidate blocks considered in
the procedure to find the best match for a block If k and k+l are
neighboring frames of the same shot, then the values can be assumed
low. This is because for a block almost the identical block can
be found due to the general constancy of the visual content within a shot.
This is not the case if frames k and k+l surround a shot boundary. Then, the
difference between the “corresponding” blocks in these two frames will be
large due to a substantial change in the visual content across the boundary.
Thus, computing the discontinuity value z(k,k+l) as a function of differences

is likely to provide a reliable base for detecting shot boundaries.
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We illustrate the computation of the discontinuity values based on the
results of the block-matching procedure by the technique proposed by
Shahraray [Sha95]. There, a frame k is divided into non-
overlapping blocks, and the differences are computed by
comparing pixel-intensity values between the blocks. Then, the obtained
differences are sorted and normalized between 0 and 1 (where 0
indicates a perfect match), giving the values as results. These values
are multiplied with weighting factors to further refine the block-matching
result and then combined together to give the discontinuity value:

Clearly, the differences between motion-compensated blocks
and can also be computed using block histograms, for

instance, by employing the expression (2.10).

2.4 MODELING PRIOR INFORMATION

The study of Salt [Sal73] on differences in styles of various film directors
surprisingly showed that, with respect to the distributions of shot lengths, the
diversity in styles for different filmmakers was not great. The obtained
distributions were characterized in nearly all cases by a considerable
similarity of their overall shapes. As reported by Salt, and later also
confirmed by Coll and Choma [Col76] in the context of their analysis of
“image activity characteristics in broadcast television”, a large majority of
obtained (normalized) distributions matched the Poisson model [Yat99]

Here, X represents the discrete “shot length” variable with the values
corresponding to the number of frames in a shot. We denote by x an arbitrary
value of the variable X, while is the model parameter. In probabilistic
terms, X can be seen as a Poisson random variable and the expression (2.20)
as its probability mass function (PMF).

The knowledge about the distribution of shot lengths in a video could
serve as the source of prior information that could be used to enhance the
shot-boundary detection performance. And, indeed, we can model the prior
probability of a shot boundary S occurring at the frame k on the basis
of the distribution model (2.20).
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Let x(k) be the current shot length, measured at the frame k since the last
detected shot boundary. Evaluating the PMF (2.20) at x(k) gives us the
probability that the length of the analyzed shot is equal to x(k). As this
probability, however, not always increases with increasing frame index k,
the PMF (2.20) is not directly suitable as the model for While,
namely, being close to zero at the beginning of a shot, the probability
should increase monotonously with each further frame elapsed since the
beginning of the shot, and converge toward 1 for We, therefore, use
the cumulative distribution function (CDF) of the random variable X as a
model for the probability First, in view of the required behavior and
value range specified above, we may say that is inherently a CDF.
Second, as the CDF value for the argument x(k) is defined as the probability
that the random variable X is no larger than x(k), this probability can be seen
as equivalent to the probability that the analyzed shot will not get any longer
than x(k) or, in other words, that a shot boundary will occur at the observed
frame k. With increasing frame index k and absence of a shot boundary, the
CDF value for the argument x(k) will rise toward one. In the limit case for

the shot has become longer than any shot observed before (e.g. in the
training set) and, therefore, the probability that the shot will get any longer
becomes close to zero.

A slight adjustment of the cumulative probability model is required,
however, in order to limit the influence of the prior information on the
detection performance in the case of an unusually long shot. Namely, a false
boundary may be found in such a shot when the CDF arrives into the value
range close to 1. To avoid this, the CDF can be scaled from its original value
range [0, 1] onto the range [0, 0.5]. Then, in the limit case for the
influence of the prior information is negligible as the probability of a shot
boundary becomes close to 50%.

Based on the above discussion, a model of the prior probability of a
shot boundary can now be defined as

Clearly, the major role of the prior probability model (2.21) in the shot-
boundary detection process is to prevent the detection of new shot
boundaries shortly after the last detected boundary. Although the
effectiveness of the model (2.21) based on the Poisson model for shot
duration was demonstrated in [Han02], the reader is suggested to also
consult the alternative ways of modeling prior knowledge, such as the
approach based on the Weibull model for shot-length distribution proposed
by Vasconcelos and Lippman [Vas00].
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Figure 2-8. Expected behavior of N consecutive discontinuity values in the neighborhood of
an abrupt shot boundary (cut) occurring between the frames k and k+l .

2.5 MODELING DISCRIMINATIVE INFORMATION

In addition to the prior knowledge regarding the presence of a shot
boundary at a given time stamp in video, we may also use different types of
discriminative information to enhance the shot-boundary detection
performance. In Section 2.2.2 we defined two general classes of such
information, namely the structural and feature information. In the following
sections we show how discriminative information can be modeled by a
discriminative function the values of which indicate the occurrence of
a shot boundary of a particular type at the frame k. Due to the fact that the
function will contain information that is characteristic for a particular
boundary type, it needs to be computed for each boundary type individually.
We discuss in this section the possibilities of defining the discriminative
function for both general classes of shot boundaries, namely the abrupt
and the gradual ones.

2.5.1 Discriminative function for abrupt boundaries

As we explained in Section 2.2.2, the presence of a particular shot
boundary type at the frame k may be revealed by the pattern created by a
number of consecutive discontinuity values z(k) computed in the
neighborhood of the frame k. Yeo and Liu [Yeo95b] showed that, if the
discontinuity values are computed between the consecutive frames of video,
the presence of an isolated sharp peak surrounded by low discontinuity
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values, like the one illustrated in Figure 2-8, may be seen as a reliable
indication for the presence of a cut at the position of the peak. To effectively
employ this information for shot-boundary detection, Yeo and Liu propose
the procedure illustrated in Figure 2-9. There, N last computed discontinuity
values are considered that form a sliding window. As we wish to check the
presence of a cut at the frame k we denote the discontinuity value in the
middle of the window by z(k,k+1). The presence of a cut is checked for at
each window position, in the middle of the window, according to the
following criterion:

The criterion (2.22) specifies that a cut is detected between frames k and
k+1 if the discontinuity value z(k,k+1) is the window maximum and, at the
same time, times higher than the second largest discontinuity value
within the window. The parameter can be understood as the shape
parameter of the pattern generated by the discontinuity values in the sliding
window. Applying (2.22) at each position of the sliding window is, namely,
nothing else but matching the ideal pattern shape with the actual behavior of
discontinuity values found within the window. The major weakness of this
approach is the heuristically chosen and fixed parameter Because is
fixed, the detection procedure is too coarse and too inflexible, and because it
is chosen heuristically, one cannot make statements about the scope of its
validity.

Figure 2-9. An illustration of the approach to shot-boundary detection from [Yeo95b]
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Instead of coarsely comparing the ratio between z(k,k+1) and with a
fixed threshold we could interpret this ratio solely as an indication for the
match between the measured and the template pattern. The larger the ratio,
the better is the match, that is, the stronger is the indication of the cut
presence. In view of this, the simple ratio between z(k,k+1) and could
already serve as a discriminative function for cuts. However, as it is
difficult to relate a particular value of this ratio to the strength of the
indication for the presence of a shot boundary, the relative distance between
z(k,k+1) and appears better suitable for this purpose [Han02].

Based on the above, the discriminative function for the detector of
abrupt shot boundaries can be defined as

With its values expressed in percentages, the function (2.23) evaluates
the pattern matching in the middle of the sliding window of the length N and
centered at the discontinuity value z(k,k+1). Since the necessary condition
for the presence of the cut between frames k and k+1 is that a sharp, isolated
peak is found at z(k,k+1), no boundary can be found there if z(k,k+1) is not
the maximum of the window. The length N of the window should be as large
as possible in order to obtain reliable pattern matching results. However, in
order to prevent the situation where the sliding window captures two shot
boundaries, the maximum value of N should be limited by the minimum
expected shot length.

2.5.2 Discriminative function for a gradual boundary

Compared to the case of abrupt shot boundaries, defining a reliable
function that represents the structural discriminative information for the
detector of gradual transitions is considerably more difficult. This is mainly
due to the fact that the pattern of consecutive discontinuity values at a
particular gradual transition is not unique and may vary in both shape and
length. The variations of the pattern length are directly related to the varying
length of the transition. The variations of pattern shape are mainly due to the
effects occurring simultaneously with the transition, such as object and
camera motion. The shape variations of gradual boundary patterns are the
main reason for the difficulty to recognize such patterns using the methods
that are based on pattern modeling (e.g. [Ala93, Aig94, Ham94, Kob99]).
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A way of dealing with shape variations of boundary patterns when
defining the structural component of the discriminative function
would be to only capture in a model the global shape characteristics of the
pattern. Although these characteristics may contain only a fraction of the
entire information about the pattern and are, therefore, not discriminative
enough, they could be sufficiently powerful to indicate the presence of a
boundary candidate. Then, the final decision regarding the presence of a
particular boundary type at the time stamp indicated by the candidate can be
made on the basis of the feature component of the discriminative
function

Figure 2-10. An illustration of the behavior of N consecutive discontinuity values computed
for the inter-frame skip l>1 within a dissolve. A close-to-triangular pattern is expected if the
dissolve length is close to the value of l.

We illustrate the possibilities for employing a coarse model of a
boundary pattern for defining the function on the following approach
that addresses the problem of dissolve detection [Han02]. First, the
discontinuity values are computed with the inter-frame skip l>1 using
motion-compensated color differences (2.18) of the pixel blocks in the
frames k and k+l. If the value of l is close to the dissolve length, the
consecutive values z(k,k+l) are expected to form a close-to-triangular shape
as shown in Figure 2-10. Here, again the sliding window of N last computed
discontinuity values is considered, centered at the value z(k,k+l). Since the
slopes of the triangular pattern are not pronounced, there is little sense in
trying to model the pattern precisely and to measure the degree of pattern
matching based on that model. Therefore the criterion for pattern matching
addresses here only the global characteristics of the measured boundary
pattern, and is defined as follows:
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The middle window value z(k,k+l) is the maximum value of the
window,

Window’s maxima on each side of z(k,k+l) have to be sufficiently
close to the middle of the window.

Clearly, we require that the pattern created by discontinuity values
matches the “ideal” pattern of a dissolve only regarding the “top” of the
triangular shape in Figure 2-10 and do not consider the shape of the slopes.
Based on the above, the structural component of the discriminative
information for dissolves can now be represented by the function

Here, and are the distances of the largest discontinuity values
to the left and to the right of z(k,k+l) from the window middle point. As can
be seen from the condition in (2.24), the value of is set equal to 1 at the
frame k if the pattern created by discontinuity values of the sliding window
fulfills the two matching criteria listed in the items above. Otherwise,
is set to 0. Consequently, each series of discontinuity values for which
is set equal to 1 is further considered as a dissolve candidate. One should
note, however, that the discriminative quality of the function (2.24) is
sensitive to the difference between the inter-frame skip l and the dissolve
length. Due to the assumption about a close-to-triangular shape of the
dissolve pattern, l should be selected as similar to the expected dissolve
length. Generally, the function (2.24) is expected to react properly as long as
the dissolve is not shorter than the half of the inter-frame skip l. If the
dissolve is too short, then the triangular discontinuity pattern will be too
flattened for the condition involving the distances and to work.
On the other hand, if the dissolve is longer than the inter-frame skip, then the
discontinuity values that are computed by comparing the frame pairs from
within the transition may be smaller than those involving frames surrounding
the beginning and the ending time stamp of the dissolve. In that case, the
function (2.24) is not likely to work properly.

In order to check for the presence of a shot boundary at the time stamp
indicated by the boundary candidate, the feature component of the
discriminative function can be used. The information considered by this
component serves not only to compensate for the imperfections in the
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discontinuity value patterns of a gradual transition but also to better
distinguish that transition from other phenomena. It is namely so that the
irregular discontinuity value patterns that are due to extreme factors can
often be falsely classified as those belonging to gradual transitions because
of their similarity with the noisy transition patterns (see the explanation in
Section 2.2.1 and the example in Figure 2-5).

In previous sections, we have already discussed the potential suitability
of the pixel-intensity variance as a source of discriminative information for
supporting the shot-boundary detection. The variance-based approach for
dissolve detection was first proposed by Alattar in [Ala93] but has been used
and modified by other authors as well (e.g. [Fer99b, Gu97, Men95, Tru00a,
Tru00b, Lie01a]). The detection of a dissolve is reduced here to detecting the
parabolic curve pattern in a series of measured variance values. One simple
example of the techniques that can be applied for this purpose was already
explained in Figure 2-6. Realizing this in practice is, however, rather
difficult as the two large negative spikes of the parabolic pattern are
generally not sufficiently pronounced due to noise and motion in video. This
problem was addressed by Truong et al. [Tru00a, Tru00b], who proposed an
improved version of the variance-based detector of Alattar [Ala93]. Truong
et al. proposed to exploit the facts that

the first derivative of the pattern should be monotonically increasing
from a negative to a positive value,

the intensity variances of both shots involved should be larger than a
given threshold,

the dissolve duration usually falls between two well-defined
thresholds.

Hanjalic [Han02], however, considered the variance pattern too imperfect
for the approaches proposed by Alattar and Truong. Therefore, just like in
the process of modeling the function he chose to match only some of
the characteristic global properties of the pattern. Namely, if the sliding
window captures a dissolve, the variance measured for frames in the middle
of the window will be considerably lower than the variance of frames
positioned near window’s edges. In contrast to this, if no dissolve occurs in a
sliding window, the variance is expected to remain relatively stable across
the window. On the basis of the above, Hanjalic computed the variance-
based feature component of the discriminative function as the relative
change of intensity variance in the frame from the middle of the sliding
window compared to the variance in the frames close to window edges.
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Equation (2.25) formulates analytically. Here, is the variance
of the frame in the middle of the window with, while and
are the variances of the frames at both window edges. The third option in the
equation (2.25), where is by definition equal to 0, corresponds to the
case where variance in the middle of the window is larger than the variances
at window edges. Since this cannot occur in a downwards-parabolic pattern,
such relation among three variances cannot reveal a dissolve.

The values of the function can therefore be seen as a reliable
indication for the presence of a dissolve in a candidate series of discontinuity
values selected using function Merging the structural and feature
components of the discriminative information into a unified discriminative
function for dissolve detection can now simply be done by multiplying
the functions and that is

As discussed in Section 2.3.3, edge-based features can serve as an
alternative to the variance of pixel intensities for deriving discriminative
information about the presence of a shot boundary at a given time stamp. As
explained by Lienhart [Lie01b], the edge contrast (EC) shows similar
behavior during a dissolve as the variance of pixel intensities. Further, the
ratio between the values of the edge-change ratio (ECR) measured at the
beginning and end of a gradual transition can serve as a feature component
of the discriminative function for detecting fades, dissolves and wipes
[Zab95, Zab99].
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2.5.3 Probabilistic embedding of discriminative
information

As the main purpose of discriminative information is to provide an
indication regarding the presence of a particular shot boundary at a given
time stamp, this indication can, just like in the case of prior information,
most naturally be formulated using probabilistic terms. A convenient way of
doing this would be to define the conditional probability of a
shot boundary of the type b at the frame k given the value of the
corresponding discriminative function computed in the neighborhood
of the frame k.

In order to properly embed the relation between the values of and
the probability of a shot boundary the function needs to
satisfy three major requirements. First, as a high value of should lead
to a high probability of boundary occurrence, is clearly a
monotonously increasing function of Further, being a probability,

needs to be defined such that its value range covers the interval
[0,1]. Finally, in order to be sufficiently robust, the function
should not be too sensitive to the values of being close to boarders of
the interval While for being close to 0 or the probability

should be almost 0 or 1, respectively, the actual transition from 0
to 1 should take place in the middle range of the interval that is, for
values of for which the boundary characteristics become
distinguishable. This transition should, however, not be abrupt but flexible
enough in order not to reject any reasonable boundary candidate.

Clearly, we could define the discriminative function in the way that
it already satisfies all of the above criteria, like, for instance, the functions
(2.23) and (2.26) introduced as examples in the previous section. In that
case, the function can directly be used as the probability
However, even if cannot be defined in this way, a variety of suitable
functions can be used taking the values of as arguments. As an
example, we present here the function formulated analytically as
follows [Han02]:

with



44 CHAPTER 2

An illustration of the function (2.27) can be found in Figure 2-11. The
parameters d and are the “delay” from the origin and the spread factor
determining the steepness of the middle curve segment, respectively. The
optimal parameter combination can be found experimentally, for
instance, such that the detection performance on the training data set is
optimized for the selected parameter values. In general, since is
computed differently for each boundary type, the parameter combination

would also need to be determined for each boundary type
separately. The basic shape of the conditional probability
however, can be considered the same for all boundary types.

Figure 2-11. A probabilistic model for discriminative information [Han02]

2.6 BAYESIAN APPROACH TO
DECISION MODULE DESIGN

In the broadest sense, the shot-boundary detection can be seen as a
pattern classification problem that assigns a given temporal segment of a
video either to the category “no boundary” (clearly, if no boundary is
contained in that segment) or to a category corresponding to a specific
boundary type (like “cut”, “dissolve”, “wipe”, or “fade”). In view of the
approaches discussed in Sections 2.5.1 and 2.5.2, the temporal video
segment mentioned above can be seen as the segment captured by the sliding
window at a given time stamp. Consequently, a wide range of tools known
from the area of pattern classification can be used to design a shot-boundary
detector.
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In view of the availability of the prior and discriminative knowledge, the
influence of which on the detection process is most naturally formulated
using probabilistic terms, we can say that the problem of shot-boundary
detection is inherently a probabilistic problem. Therefore, the Bayesian
decision theory [Dud01] appears to be the natural framework for developing
the shot-boundary detector, or, in our specific case, the decision module in
Figure 2-7.

In the general application context of video content analysis, both types of
detection errors, that is, false and missed detections, may have equal
negative influence on subsequent high-level video content analysis steps. In
this sense, the performance quality of the detector is determined by the
average probability that any of the errors occurs. We therefore choose the
minimization of the average error probability as the criterion to illustrate the
development of a Bayesian shot-boundary detector.

We now consider the temporal video segment captured by the sliding
window at the time stamp k, and search for the best category for that
segment, given the discontinuity values within the window, the prior and the
discriminative information. As can be derived from the general Bayesian
decision rule, minimizing the average error probability corresponds to
deciding for the category that maximizes the posterior probability

of the category that is

where z(k) is the discontinuity value measured at frame k, and where may
represent any of the hypotheses of the posed shot-boundary detection
problem, such as “cut”, “dissolve”, “wipe” or “no boundary”.

By applying the Bayes rule to the posterior probability the
decision rule (2.29) can be written as

Here, is the likelihood of the category with respect to the
observed discontinuity value, while is the prior probability that the
category is the proper one to be assigned to the observed video segment.

The likelihood can be estimated through the following two
steps:

Generating normalized distributions of the discontinuity values for
each category on the basis of training video data,
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Finding the parametric models approximating the obtained
distributions.

In their technique developed for abrupt boundary detection, Vasconcelos
and Lippman [Vas00] approached the second step using generic mixture
models [Dud01]. They found a mixture of Erlang distributions an
appropriate model for the “no boundary” category, and a combination of a
Gaussian and a uniform density as the best model for the “cut” category. A
mixture of two Gaussian distributions was used by Boreczky and Wilcox
[Bor98] as the basis for modeling the likelihood for a fade, while all other
categories were represented by simple models involving one Gaussian
density only. Hanjalic [Han02] also proposes simple one-density models of
the “cut”, “dissolve” and “no boundary” categories.

By investigating the classification rule (2.30) more closely, one can
realize that this rule does not explicitly take into account the discriminative
information that we modeled in Section 2.5. A way of integrating this
information in the detection process is to see the prior probability of
the category representing the shot boundary of the type b as the joint
probability of two events occurring at the frame k, namely the event that any
shot boundary occurs at the frame k, and the event that this boundary is of
the type b. As the occurrence of the latter event only depends on the value of
the discriminative function the two events can be considered
independent. Using the results from sections 2.4 and 2.5 we can now define
the new prior probability of a boundary of the type b at the frame k as

Clearly, the conditional probability can be seen as a modifier
of the general prior probability of shot boundary occurrence in view of
the “context” defined by the boundary class b. In this sense, the expression
(2.31) can be referred to as context-dependent prior probability of shot
boundary occurrence. The effect of the discriminative information on the
shot-boundary detection process becomes apparent in the situations where
both and the likelihood are in favor of signaling the
presence of the boundary type (e.g. when a large likelihood value appears
long after the last detected boundary), whereby is not the proper category
to select at the given time stamp. In this way, the boundaries detected falsely
due to, for instance, disturbing factors mentioned in Section 2.2.1 can be
prevented using the discriminative information that is embedded in

Since the prior probabilities of all categories add up to one, we can now
express the prior probability of the remaining category “no boundary” as
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An alternative to the above concept of multi-hypotheses testing is to use
cascaded binary detectors [Han02], as illustrated in Figure 2-12. A binary
detector decides about the presence of the boundary of one particular type
only. If that boundary type is not found at the given time stamp, then the
detector of another boundary type is activated.

Figure 2-12. Cascaded binary detectors [Han02]

Except of keeping the basic detector structure simpler than in the general
case (2.29), linking the detectors as described above can also be beneficial
for improving the total detection performance of the cascade, especially if
different inter-frame skips are used per detector. We explain this on the
example of two series of discontinuity values computed for the inter-frame
skip l=1 and l=22, that are aligned in time as shown in Figure 2-13.

In addition to its usefulness for amplifying the changes in the visual
content flow along a gradual transition, a large value of the inter-frame skip
produces “plateaus” that surround the high peaks of the cuts. Due to the
appearance of the series of large discontinuity values, each of these plateaus
can be mistaken for a gradual transition, that is, a falsely detected gradual
transition can be reported at a certain plateau point, before or after a cut is
detected. However, if the construction in Figure 2-12 is used, and if the
detector of cuts is the first one in the cascade, the cuts are detected first.
Then, all gradual transitions detected in later cascade components and found
within the interval (k-l/2,k+l/2) from a cut can be assumed a consequence of
a plateau and, therefore, eliminated a posteriori. Hereby, the probability to
eliminate a valid gradual transition is almost negligible since, first, the
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detection of cuts is, in general, rather reliable and, second, the occurrence of
a cut this close to a gradual transition is highly improbable.

Figure 2-13. Discontinuity value time curves obtained on the basis of motion-compensated
pixel block differences with the inter-frame skip l=1 and l=22 [Han02].

2.7 REMARKS AND RECOMMENDATIONS

Although the theory and algorithms for shot-boundary detection have
reached a high level of maturity, the problem of shot-boundary detection is
still not completely solved. The challenges can be summarized as follows:

Understanding gradual transitions: What are the properties that make
a particular class of gradual transitions considerably different from
other transition classes and other effects in video?

How to model the characteristic properties of a transition in the form
of discriminative information that can serve as a constructive input
into a shot-boundary detector?
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What can we do more regarding the feature selection and
computation of discontinuity values in order to make the shot-
boundary detection more robust toward special effects, screenplay
effects and extreme actions of the director?

How to minimize the complexity of the shot-boundary detection
down to the level where (close-to) real-time implementation of the
detector becomes possible, while keeping the detection error rate
sufficiently low?

Let us now discuss these challenges in more detail:

While detecting cuts is not that much of a problem any more, the
available detectors for gradual transitions are still of rather insufficient
quality. This is because of great diversity of the measurable signal behavior
around and within these transitions. The diversity stems in part from varying
video-directing styles, and in part from multiple superimposed effects, like
in the case of a gradual boundary accompanied by a lot of object or camera
motion. In this chapter we showed how the discriminative information can
be derived in the case of a dissolve. The discriminative quality of the
function modeling this information is, however, dependent on the dissolve
length. Besides, the discriminative functions for other types of gradual
transitions are still to be defined. This needs not to be done from scratch. A
long history of previous attempts to detect these transitions can certainly
serve as a valuable source of inspiration.

In Section 2.6 a Bayesian minimum-error-probability (MEP) criterion
was used as the basis for developing the shot-boundary detector. The main
motivation to develop this detector within the framework of Bayesian
decision theory was the need to embed the prior and discriminative
information that are both expressed most naturally in probabilistic terms.
The MEP criterion was chosen to maximize the detection performance with
respect to the number of detection errors, that is, false and missed
boundaries, which could have negative effect on subsequent higher-level
video content analysis steps. However, alternatives have been proposed as
well. For instance, Boreczky and Wilcox [Bor98] consider another class of
Bayesian techniques – hidden Markov models - to design their shot
boundary detector, while Lu and Zhang [Lu99b] employ neural network
tools for this purpose. Clearly, the entire range of pattern classification
techniques can be employed when designing a shot-boundary detector, as
long as ways are found to effectively embed the prior and discriminative
information in the detection process.
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Last but not least, we address the issue of computational complexity of
shot-boundary detection algorithms. In video content analysis systems shot-
boundary detection is generally considered only a preprocessing step that
provides the information on the basic temporal video structure to be used in
much more complex, high-level content analysis algorithms. As these
algorithms take most of the available computational power, the complexity
of the preprocessing steps should be kept low. However, minimizing the
complexity is, generally, a contradictory requirement to the one of securing a
low detection-error rate. A good example is the abovementioned problem of
a gradual transition in which the editing effects is superimposed to object
and camera motion. In order to eliminate the motion influence on the signal
behavior within the transition, motion estimation and compensation could be
applied. This is computationally expensive, and, therefore, justifiable only in
cases where motion information is already available, like in MPEG-
compressed video [Mit97]. And, indeed, a vast number of methods have
been proposed so far for designing shot-boundary detectors for MPEG-
compressed video. The problem here is, however, that the detector
performance may be dependent on the characteristics of the particular
encoder.
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Chapter 3

PARSING A VIDEO INTO SEMANTIC
SEGMENTS

3.1 INTRODUCTION

Parsing a video into shots, as discussed in the previous chapter, can be
considered an elementary, or low-level, video analysis step. The reason for
such characterization is that neither this process nor the obtained results are
related to the content of the video being parsed. In the process of high-level
video parsing, however, we search for the boundaries of semantic segments.
A semantic segment can be seen as a temporal partition of a video
characterized by coherent content. While shot-boundary detection organizes
video content at the syntactic level, high-level parsing provides natural
semantic segmentation of video that the viewers can associate with [Wan01].
Figure 3-1 illustrates the position of semantic segments in the hierarchy of
the overall video content structure.

Clearly, the notion of content coherence stands central in the context of
high-level video parsing: semantic segments can be seen as aggregates of
consecutive shots or shot parts that are linked together by content coherence.
This can be illustrated by the example of a semantic segment of a movie,
also referred to as episode, which can be defined as “a series of shots that
communicate a unified action with a common locale and time” [Bog00].
Independent of possible changes in the camera angle or zoom, in the parts of
the scenery, or in the persons or objects captured by the camera in different
shots of an episode, we are capable of recognizing the unity of the action, the
common locale and time all along the episode, just like the switch to another
action, locale and time at the episode’s end. The same applies to other genres
as well, such as the news or documentaries. There, we are also capable of
recognizing the beginning and end of a television news report or of a
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thematic unit in a documentary, independent of possible differences in the
content elements appearing in the individual shots of the program.

In this chapter we first explain the principle of high-level video parsing
and then explore the possibilities for developing parsing methods on the
basis of this principle. In particular, we concentrate on the problem of
computing the values of content coherence along a video, and search for the
locations of semantic segment boundaries at places where these values are
found to be sufficiently low.

Figure 3-1. Video content structure pyramid

3.2 THE PRINCIPLE OF CONTENT COHERENCE

The idea of using the coherence principle as the basis for the
development of a video parsing method was already introduced implicitly in
Chapter 2. Namely, low-level video parsing can be seen as the analysis of
the coherence in the visual content of a shot, that is, of the continuity of
visual features along the consecutive frames of a shot. As explained in
Chapter 2, a shot is taken by a single camera that, for instance, zooms in on
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an object, follows a moving object or pans along a scene. Due to a limited
magnitude of motion and a frame rate as high as 25 to 30 frames a second,
each new frame contains a considerable portion of visual material from the
previous frame. The coherence ends at the shot boundary, where the camera
starts to show some other scenes or objects with – in general – drastically
different visual characteristics than those in the previous shot. By computing
the values of the visual content coherence along the consecutive frames of a
video and by applying suitable detection mechanisms to isolate
distinguishable coherence lows (i.e. sufficiently high values of visual content
discontinuity z(k)), one can detect shot boundaries quite successfully.

Although the values of the content coherence are also based on the
measurement of the relevant low-level features along a video, they are
considerably more difficult to compute. Since an idea about the continuity of
the content along a video can hardly be obtained by looking at one or two
video frames only, the values of content coherence need to be estimated by
analyzing the consistency of the features on a larger scale. This can be done
by comparing, instead of single frames, larger temporal units of video, or
video clips. These clips can be entire shots, but also the shot parts. For
example, under the assumption that a movie director usually starts a new
episode with a new shot, the semantic segment boundaries in movies are
likely to coincide with shot boundaries. In other words, here the targeted set
of semantic segment boundaries is generally a subset of shot boundaries
detected along a movie. In the case of a TV news broadcast, however, the
change of topics may take place in the middle of a shot (e.g. when the
anchorperson moves from one topic to the next). Here, obviously, other
temporal units than shots need to be considered like, for instance, the periods
between the time stamps at which the anchorpersons appear, change or pause
while reading. In the remainder of this chapter we will use the general term
“(video) clip” when referring to the elementary temporal unit of a video that
serves as the basis for the process of computing the content coherence.

Clearly, only by selecting a feature set that makes it possible to compute
reliable content coherence values one can secure a good parsing
performance. Basically, two questions arise regarding the feature selection
process:

Which feature set must be used to obtain a high content-coherence
value when comparing the clips that belong to the same semantic
segment?

Can this feature set also reveal distinguishable low content-
coherence values at semantic segment boundaries?
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We formalize the process of high-level video parsing and its dependence
on an appropriate set of low-level features by introducing the following
definitions of content coherence computability and parsable video:

Definition 3.1 relates the computability of the content coherence of a
video to the existence of the feature set F that we can use to compute the
content coherence time curve as shown in Figure 3-2. As such, this relation
can be seen as a first attempt of bridging the semantic gap introduced in
Chapter 1. We will discuss the possibilities for finding an appropriate feature
set F in more detail in Section 3.4.

Definition 3.2 points out that it makes sense to parse a video only if its
temporal content structure allows us to do it, that is, if there are semantic
segment boundaries present. As we already indicated at several places
before, typical examples of such videos are news programs, movies with a
clear episode-based structure and the documentaries made as series of
separate thematic units. However, the process of high-level parsing can also
be considered in a broader context, where the segments of a video genre
which is by nature not necessarily parsable are interleaved by the segments
of another video genre. This is the case, for instance, with commercial
breaks in a video. There, the segments of the original video and the
commercial segments can be seen as the semantic segments, and their
merging points as the semantic segment boundaries.

Definition 3.1

If there is a feature set F that is capable of revealing the changes
in content coherence along a video, then the feature set F makes
the content coherence computable.

Definition 3.2

If a video is generated as a concatenation of semantic segments
and if the content coherence is computable in view of the feature
set F, then this video is parsable in view of the feature set F.
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Figure 3-2. An illustration of the basic idea underlying the high-level video parsing process,
Features are extracted from each clip and serve as input for the computation of the content
coherence time curve. Distinguishable local minima of the content coherence time curve
indicate the semantic segment boundaries.

3.3 VIDEO PARSING BASED ON THE CONTENT
COHERENCE PRINCIPLE

If a video is parsable in view of the feature set F, then in each semantic
segment of that video we can expect to find clips that are related to each
other with respect to F. An important issue to note here is that these related
clips are not necessarily attached to each other. Let us explain this on the
example of a dialog between subjects A and B, which is typically directed by
alternating the shots showing each subject, thus creating a series of shots
like, for instance, ABABAB. Typical for this series of shots is that, on the
one hand, all the shots A or B are very much alike in terms of their visual
characteristics and often also in terms of the signal characteristics of their
accompanying sound track (e.g. the voice of the subject captured by the
camera). On the other hand, the difference between two consecutive shots A
and B may be considerable: they show different persons, possibly against a
different background, and the voices in the sound track are not the same
either.
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If we now let the set F consist of the features representing the visual and
audio characteristics of a clip, a set of links can be established connecting
the clips of this dialog as illustrated in the left part of Figure 3-3. All the
clips showing the subject A can be linked together, and in the same way also
all the clips showing the subject B. Ideally, the entire semantic segment will
be captured by the links, and the linking process will not continue further
than the last clip of the segment. Namely, under the assumption that the
video is parsable in view of the feature set F, the clips of the next following
dialog in Figure 3-3, showing the subjects C and D, are much different from
both the clips A and B from the first dialog in terms of F. In the second
dialog, however, again all the clips showing the subject C can be linked
together, and all the clips showing the subject D as well. Ideally, the second
dialog will also be captured by the links in its entirety.

Figure 3-3. By establishing links between the clips that are related with respect to the feature
set F the basis can be created for content coherence computation

Clearly, the content coherence values along a video can be computed by
investigating the possibility to link the clips in the way described above.
Then, high coherence values are expected at the time stamps surrounded by
strong links, while low coherence can be expected where the links are weak
or where no links can be established between the clips surrounding the
observed time stamp.
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In the following we will explore the practical possibilities for developing
high-level video parsing methods on the basis of the clip-linking approach.
For this purpose we introduce four illustrative ideas, namely

time-constrained clustering,
time-adaptive grouping,
content recall,
fast-forward linking.

3.3.1 Time-constrained clustering

The idea of time-constrained clustering was introduced by Yeung et al.
[Yeu96a] and was used by the same authors later on to develop one of the
pioneering methods for high-level video parsing via the so-called scene
transition graph [Yeu98].

In the process of time-constrained clustering, the overlapping-links
structure along a video is revealed by clustering together the clips that are
similar in terms of their content and temporally not far from each other. For
instance, in the example of the clip sequence shown in Figure 3-3, four
clusters are expected, one for all A, B, C, or D clips. Then, all the clips in
one cluster are linked together, which eventually leads to the linking scheme
in Figure 3-3.

Figure 3-4. An illustration of the idea of time-constrained clustering
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We emphasize again that here the clustering process is not only guided
by the content similarity of the clips but by their mutual temporal locality as
well. We illustrate the necessity for this time constraint by the example in
Figure 3-4. The example considers a sequence of three semantic segments,
with the first and the last segment containing semantically the same material.
Clearly, without the time constraint, the clips A or B from the first segment
would be clustered together with the corresponding clips from the third
segment. As this corresponds to the propagation of the similarity links across
all three segments, the two semantic segment boundaries in Figure 3-4
would be missed.

We now consider two arbitrary clips x and y in a video and denote by
d(x,y) and S(x,y,V) their mutual temporal distance and their content
similarity revealed by the feature vector V, respectively. Further, let be
the i-th cluster of clips, T the maximum allowed temporal distance between
two clips within the same cluster and the minimum required content
similarity between two clips in one and the same cluster. The criteria for
time-constrained clustering can now be defined by the following set of
formulas:

Here, is the time-constrained similarity between the clips x and y
defined as

with F being the overall feature set directing the clip-linking process:

As illustrated in Figure 3-4, the effect of the time constraint in (3.2) becomes
visible through the fact that the similar clips found further apart than allowed
by the time interval T are not clustered together, but are put in separate
clusters.

In view of the above, a content coherence function can be defined that
relates the value of the content coherence C(F, t) at the given time stamp t to
the time-constrained similarity of the clips m and n surrounding this time
stamp. An example of such a function can be given as follows:
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Clearly, the content coherence value will be higher than only if the time
stamp t is surrounded by at least two clips belonging to the same cluster. If
no elements of the same cluster can be found around the observed time
stamp, then the value (3.4) will be lower than as defined by (3. 1b). In this
way the clustering threshold here serves also as the threshold which can
be used to check the coherence value (3.4) upon the presence of the semantic
segment boundary at the time stamp t. Due to the time constraint in (3.2), the
maximization process in (3.4) only needs to take into account the clip pairs
m and n that have a mutual distance smaller than T.

3.3.2 Time-adaptive grouping

The major disadvantage of time-constrained clustering is that it may
suffer from discontinuities as a consequence of the “windowing effect”.
Namely, two clips that are sufficiently similar in terms of their content are
clustered together as long as their mutual distance is shorter than T.
However, when this distance becomes larger than T, the overall clip
similarity is suddenly set to 0 in order to prevent that the clips merge into a
cluster. Clearly, this problem makes the time-constrained clustering idea
highly sensitive to the choice of the interval (window) size T.

The sensitivity of time-constrained clustering to the value of T can be
reduced by using the concept of temporal attraction between the clips, as
introduced by Rui et al. [Rui99]. The temporal attraction can be seen as a
continuous and decreasing function of the temporal distance between the
clips. As an example, we can use a linear function

which is a generalization of the function originally proposed by Rui et al.
Here d(x,y) is the temporal distance between the clips x and y, and L is the
constant determining how fast the temporal attraction value will decrease
toward 0. The behavior of the function (3.5) is illustrated in Figure 3-5.

By combining the content similarity S(x,y, V) between the clips x and y,
and their temporal attraction Attr(x,y) we can define the time-adaptive
similarity of the clips x and y as
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Here, again, F is the overall feature set directing the shot grouping process,
as defined by (3.3). The function (3.6) increases (decreases) with an
increasing (decreasing) content similarity of the clips and with an increasing
(decreasing) temporal attraction value Attr(x,y). We may also say that the
function represents the overall attraction between the clips x and y.

The continuous character of the similarity function (3.6) is the major
factor distinguishing this function from the time-constrained similarity (3.2),
which may change abruptly. Rui et al. [Rui99] introduced the clustering
process based on the similarity function (3.6) as time-adaptive grouping. We
can now compute the new content coherence value at the time stamp t using
the expression (3.4) in which we replaced the time-constrained similarity

by the time-adaptive similarity

The expression (3.7) relates the content coherence value at the time stamp t
to the overall attraction of the clips m and n surrounding this time stamp.
Again, the threshold that evaluates the similarity between the clips
m and n and decides about their membership in the same group can directly
be used as the threshold that checks the value (3.7) for the presence of the
semantic segment boundary at the time stamp t.

Figure 3-5. Behavior of a linear temporal attraction function (3.5)
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3.3.3 Content recall

The perception of the content homogeneity in a semantic video segment
may also be related to the amount of “recalled” content, that is, to the degree
to which the video clips appearing later in the segment remind the viewer of
the clips that appeared earlier in that segment (Kender and Yeo [Ken98]).
The stronger the recall of the past video clips by the new ones, the stronger
the perception of content coherence. We will refer to this further on as
content recall.

Let us consider the clips m and n that are linked together on the basis of a
strong relation between their contents with respect to the feature set F. This
link can be interpreted as an indication of the recall of a part of the content
of m by the content of n. If we denote by the degree of recall of the
clip m by the clip n, then we can obtain the value of the content recall at the
time stamp t, for instance, as a sum of the values computed for all
clips m older than t and all clips n newer than t [Ken98, Sun00]:

Clearly, the value of the content recall (3.8) will vary along the sequence.
As we illustrate in Figure 3-6, high values will be obtained at the time
stamps surrounded by many linked clip pairs and Somewhat lower
values will result at places where less linked clip pairs are found while
very low values will occur at those time stamps that are surrounded by only
few or even no links The time stamps where extremely low values of the
content recall are found are likely to separate different content units, that is,
they are likely to act as semantic segment boundaries. In this sense, the
behavior of the content recall along a video can be said to resemble the
expected behavior of the content coherence time curve (Figure 3-2).
Consequently, the content recall (3.8) can be used as a model for content
coherence, that is,

Here, w(t) is an optional normalization function the effect of which will be
discussed later on.

A clear advantage of the high-level video parsing method based on the
coherence function (3.9) is that the sensitivity of the parsing process to the
value of a fixed threshold has disappeared. Namely, in contrast to time-
constrained clustering and time-adaptive grouping, where the clip
clustering/grouping threshold serves at the same time as a video parsing
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threshold, here the content coherence computation is separated from the
parsing process. Once the content coherence function (3.9) is computed, the
values C(F, t) can be thought of as inputs in a detector that decides about the
presence of a semantic segment boundary at the time stamp t and that can be
developed separately and optimized in view of the required performance,
complexity and available (prior) knowledge. Actually, because the
coherence function C(F, t) can be understood as an (inverse) analogy to the
discontinuity value time curve z(k), we can approach the detection of the
distinguishable coherence lows at semantic segment boundaries in a similar
way as the detection of shot boundaries, for instance, by using the theory and
tools of statistical optimization.

Figure 3-6. Content recall at a given time stamp of a video can be computed on the basis of
the links between the clips surrounding that time stamp.

If we interpret the links between the clips in terms of content recall, then
the feature set F directing the clip-linking process can be said to contain the
following features [Ken98, Sun00]:

Content similarity of the clips,
Lengths of the clips,
Temporal distance between the clips.

Namely, the stronger the content similarity of the clips, the stronger the
recall. Further, shorter clips are less likely to be remembered than longer
ones. Finally, the larger the distance between the clips, the less likely it is
that they are related to each other. Consequently, the feature set F can be
defined here as a vector consisting of three components:



PARSING A VIDEO INTO SEMANTIC SEGMENTS 69

Here, again, the vector V serves as the basis for computing the content
similarity S(m,n, V) between the clips m and n, while d(.) is their temporal
distance. The component l(.) represents the length of a clip.

Kender and Yeo [Ken98] compute the recall values as a product of
the content similarity S(m,n,V) and the function L(m,n), which takes into
account the lengths and the temporal distance of the clips:

The reader may notice that, basically, the expression (3.11) is an extension
of expression (3.6) for the time-adaptive clip similarity. In particular, the
function L(m,n) can be seen as an extended version of the temporal attraction
function Attr(m,n).

In order to find a suitable model for the function L(m,n), Kender and Yeo
first investigated the decrease in the recall value between individual frames
of a video as a function of their mutual distance. This decrease is modeled
by the exponential function where v is the distance between video
frames and B is the constant determining the weakening rate of the recall
with the increase in the value of v. The constant B can also be seen as the
size of a short-term memory buffer: the longer the memory, the longer the
frame from the past remains available for being recalled by a future frame.
The value of L(m,n) is now found by integrating the effect of the function

over all frame pairs in the clips m and n, that is,

with a and b being the starting time stamps of the clips m and n,
respectively. Due to the normalization, the scalar factor in (3.12) is neglected
when L(m,n) is replaced in (3.11) by the expression (3.12). The recall value

can now be computed as

and the content coherence value (3.9) as
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The normalization function w(t) is ideally selected such that in addition
to rescaling the coherence values into the range between 0 and 1 (“no recall”
and “complete recall”, respectively) it also improves the quality of the
obtained coherence values. Namely, an investigation of the values obtained
by the formula (3.14) without normalization shows that these values are
strongly biased towards maximum coherence in the middle of the video and
are nearly zero at either extreme. In order to compensate for this, Kender and
Yeo proposed the following normalization function:

Here, the value stands for the maximum possible similarity between
two clips in terms of the feature set V. Consequently, the function (3.15)
actually corresponds to the maximum possible content recall at the time
stamp t, given the lengths of the clips and their temporal distances.

3.3.4 Fast-forward linking

While parsing a video using the content recall method requires the
computation of content coherence values (3.14) between each two
consecutive video clips, the method of fast-forward linking (Hanjalic et al.
[Han99a]) investigates the presence and strength of similarity links between
the clips and computes the content coherence values in a “fast-forward”
fashion for an entire series of clips. In order to explain this principle in more
detail, we consider the following case set, which is also illustrated in Figure
3-7.

CASE 1: The clips and are strongly attracted to each other in terms
of the feature set F. Therefore, they form a linked pair and belong to the
same semantic segment E. Consequently, all intermediate clips also belong
to that semantic segment, that is,

with (3.16)
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Here, c is the number of subsequent clips (the look-ahead distance) with
which the current clip is compared to check their mutual attraction Q in
terms of the feature set F. In practice, Q may stand for the (time-adaptive)
clip similarity, the recall function, or for any other criterion for establishing a
semantic link between two clips. The threshold function T(k) can be
understood as a generalization of the thresholds introduced before in the
contexts of time-constrained clustering and time-adaptive grouping and
specifies the minimum value of Q required to establish a link.

Figure 3-7. An illustration of the fast-forward linking process

CASE 2: There are no subsequent clips that are sufficiently attracted to clip
However, one or more clips preceding clip may link with clip(s)

following clip Then, the current clip is enclosed by a pair of clips that
belong to the semantic segment E:

Here, r is the number of clips to be considered preceding the current clip
(the look-back distance).

with (3.17)
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CASE 3: If for the current clip neither (3.16) nor (3.17) is fulfilled, and if
clip links with one of the previous clips, then clip is the last clip of the
semantic segment E.

Figure 3-8. High-level parsing in a fast-forward fashion. The clips 1 and 2 can be linked
together, and are by definition part of a semantic segment. Clip 3 is implicitly declared as a
part of the segment since shot 4 preceding shot 3 is linked to a future clip 5. Clip 5 is at the
boundary of the semantic segment since it cannot be linked to future clips, nor can any of its r
predecessors.

To detect boundaries between semantic segments, one could, in principle,
check equations (3.16) and (3.17) for all clips in the video sequence. This is
computationally intensive, however, and also unnecessary. According to
(3.16), if the current clip k is linked to clip k+p (e.g. the link between clips 1
and 2 in Figure 3-8), all intermediate clips automatically belong to the same
semantic segment, so they need not to be checked. Only if no link can be
found for clip k (e.g. clip 3 in Figure 3-8), it is necessary to check whether at
least one of r clips preceding the current clip k can be linked with clip k+p
(p>0). If such a link is found (e.g. the link between clips 4 and 5 in Figure 3-
8), the procedure can continue at clip k+p; otherwise clip k marks the
boundary of the semantic segment E (e.g. clip 5 in Figure 3-8). The
procedure then continues with the next clip, that is, with the first clip of the
semantic segment E+1.

The content coherence value C(F,t) at the time stamp t marking the end
of the considered clip k can now be computed as the maximum of the
attraction values Q found, that is,
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If the equations in cases 1 and 2 are analyzed more thoroughly, it
becomes clear that the possibility for fast-forward video analysis is provided
by integrating the content-coherence computation and evaluation steps. In
other words, through the thresholding in (3.16) and (3.17), the process of
linking of video clips is made dependent on the degree of content coherence
found in the series of video clips under investigation. If this degree is
insufficient, no links are established and a semantic segment boundary is
found. Simultaneous computation and evaluation of content coherence
values was also the underlying principle of time-constrained clustering and
time-adaptive grouping. Here, however, the sequential nature of the linking
process makes it possible to abandon the concept of a fixed threshold and to
use a more robust mechanism for detecting distinguishable local minima in
the content coherence time curve. Like in the case of the parsing process
based on the content recall principle, we can approach this detection problem
similarly as the problem of detecting shot boundaries. Purely as an
illustration of the possibility of computing the adaptive threshold function
T(k) in practice, we mention here the threshold function that is based on a
modified moving average principle [Han99a]. There, the threshold value at
the clip k is computed recursively using all content coherence values
obtained since the last detected semantic segment boundary, that is,

Here a is a fixed parameter whose value can be determined experimentally.
The average is computed as

The parameter denotes the number of links in the current semantic
segment that have led to the current clip k, while the summation in (3.20)
comprises the clips defining these links. Essentially the threshold T(k) adapts
itself to the content inconsistencies found so far in the semantic segment. It
also uses as a bias the last content coherence value of the previous
semantic segment for which (3.16) or (3.17) is valid.

3.4 CONTENT SIMILARITY BETWEEN CLIPS

Independent of the approach we may choose to reveal the overlapping-
links structure of a semantic video segment, the content similarity S(x,y, V) is
one of the major criteria for establishing a semantic link between the clips x
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and y. When computing this similarity, we need to select a feature set V that
is capable of revealing the (dis)similarity of the semantic content of the clips
x and y.

Already in Chapter 2 we discussed the problem of selecting an
appropriate feature set for video parsing purposes in the context of shot-
boundary detection. There, it was natural to assume that the feature vector
used to compute the visual content discontinuity time curve z(K) was
constant for any video. The assumption was based on the fact that this
feature vector only needs to reveal the differences in visual content (and not
in actual content) between video frames, for instance, the differences in their
color composition. Visual content of the clips x and y can also reveal their
semantic relation in some cases, like, for instance, in movies. Namely, a
semantic segment of a movie, the episode, is “usually composed of a small
number of interrelated shots that are unified by location or dramatic
incident” [Bea94]. This means that the elements of the scenery defining the
location and the foreground objects involved in the “dramatic incident” will
usually appear, either completely or in part, in most of the shots of the
episode. Therefore, an analysis of visual features is likely to provide a good
base for establishing overlapping links between the shots of a movie episode
and for revealing their semantic relation. Moreover, the boundaries between
movie episodes typically coincide with a change in location and dramatic
incident, which causes a change in the visual content of the shots [Ven02].
Because of the above, a visual feature vector V seems to be suitable for high-
level parsing of movies.

A visual feature vector V is, however, not suitable for computing the
content coherence of the clips belonging to, for instance, a TV news report.
To explain this, let us consider an example news report discussing a sport
event. The report typically starts with an anchorperson shot (shot showing a
news reader) introducing the topic. Subsequent clips may show the city
where the event took place, some aspects of the event itself, close-ups of
athletes and fans, or interviews with people commenting on the event. As the
clips mentioned above are deliberately chosen to show as many important
aspects of the event as possible within the limited time reserved for this
report, there is hardly any repetition of the visual material along the report.
Clearly, clues other than visual ones need to be found that relate the clips of
this semantic segment to each other and separate them from the clips of
another report. In this case, the semantic links between the clips can be
established, for instance, by searching for the appearance of a similar set of
words in the speech accompanying the clips. The fact that all clips in a
report address the same topic implies that their textual content may be rather
consistent. Consequently, a text-based feature vector V may be most suitable
in this case.
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Although the feature vector V that optimally depicts the content
similarity of video clips cannot be assumed to be unique for all video genres,
in most of the parsable video genres either a visual or a text-based feature set
V can be used. In sections 3.4.1 and 3.4.2 we therefore elaborate in more
detail on the possibilities for computing the content similarity on the basis of
a visual or text-based feature vector V.

3.4.1 Visual similarity between clips

Visual similarity between clips can be computed using one of the
following two major approaches:

approach involving all frames of the clips,
approach using visual abstracts of the clips.

A simple technique illustrating the first approach involves (a) finding the
most similar pair of frames in clips x and y in terms of the feature set V, (b)
defining the dissimilarity D(x,y, V) between the clips as the dissimilarity of
this frame pair, and (c) computing the similarity S(x,y, V) of the clips as the
inverse of D(x,y,V) [Ken98]. As in this case the problem of clip comparison
is reduced to the problem of image matching, the feature set V can be
selected to contain the bins of the color histogram of the frame [Yeu95a],
color moments and a fractal texture dimension [Wan01], a combination of
frame’s texture and shape parameters [Cha95], or any other features that are
typically used in the context of image matching and retrieval [Bim99]. If the
dissimilarity values D(x,y, V) are normalized, for instance, to the range of [0,
1], then the inversion can simply be performed as S(x,y, V) = 1 - D(x,y,V).

Instead of computing the similarity between the clips using only the best
matching frame pair, we can also search for the optimal mapping between
the frames of one clip and the frames of the other clip [Sha98]. Here, the
value D(x,y, V) can be computed as

where and are the frames of the clip x and y, respectively, and where
M is a possible one-to-one mapping between the frames of two clips.

with
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A clear advantage of the techniques belonging to the first approach is that
they require no preprocessing of the clips prior to similarity computation.
However, comparing each frame of one shot with each frame of another shot
may often be too complex and therefore inefficient. An alternative is offered
by the techniques of the second approach. There, the visual content of a clip
is first represented in a compact way, in the form of a visual abstract, and
then this abstract is used for computing the clip similarity. Due to a large
redundancy in the visual content of consecutive frames in a clip, the data set
contained in a visual abstract is typically much smaller than the one used in
the first approach. In the following we will discuss the techniques for
computing clip similarity based on two major types of visual abstracts:
keyframes and mosaics.

3.4.1.1 Clips similarity based on keyframe comparison

The problem of extracting characteristic frames – keyframes – from video
has been addressed extensively in the past, not only for clip comparison in
the context of high-level video parsing but also for the purpose of building
visual interfaces for digital video [Han00, Gir01]. For the keyframe set that
is to be extracted for the purpose of clip comparison we require that

the redundancy in the visual content captured by the keyframes is
minimized,

keyframes capture all relevant aspects of the visual content of the
clip.

The first requirement serves to minimize the size of the data set entering
the clip comparison process. This data reduction, however, must not violate
the second requirement, which secures that the extracted keyframe set is
usable as a representation of the visual content of a clip. A practical
consequence of the second requirement is that, in general, the number of
keyframes will vary across clips depending on the magnitude of the variation
in the visual content of the clips.

The techniques for reducing a video clip to a limited number of
keyframes that satisfy the above requirements fall best into the category of
non-sequential keyframe extraction (NSE) techniques, as opposed to those
techniques classified as sequential in a local (SELC) or global context
(SEGC) [Han00]. In order to explain the differences between these
techniques, we may think of a video as a concatenation of frame series each
of which is characterized by high visual-content redundancy. Depending on
the dynamics of the visual content, these frame series typically include
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several consecutive frames, but may also stretch to complete shots like in the
example of a stationary shot showing a “talking head”. Then, keyframes
could be extracted from the clip in the way that the visual content
redundancy is minimized in each of these frame series. In the “talking head”
example, one keyframe would then be sufficient to represent the entire frame
series. Consequently, keyframes are obtained as (non)equally distributed
sample frames of a clip. We refer to this class of techniques as sequential
extraction in a local context (SELC).

Since a SELC technique extracts keyframes with the objective of
minimizing the visual content redundancy locally, similar keyframes may
appear that are extracted from different (remote) sequence fragments. This
recurrence of the similar visual material is necessary for the main application
of the SELC keyframe sets, which is to provide a compact representation of
the content flow along a video - a storyboard. However, for many other
application contexts this recurrence of the visual content, and a typically
high number of extracted keyframes related to it, is not required and may
even be seen as a problem. This is not only the case in the context of this
chapter, where a compact representation of the visual content of two clips is
required for their efficient comparison, but also in keyframe-based video
browsing and retrieval tools, where the abundance of keyframes makes the
browsing interface too complex, slows down the interaction process and puts
unnecessary large demands on storage space for keeping the keyframes.

What is required for the clip comparison and browsing applications is to
minimize the number of extracted keyframes while capturing all relevant
aspects of the visual content of a video. A possibility of doing this is to
modify the SELC approaches by taking into account all previously extracted
keyframes each time a new frame is considered for extraction. Then, a new
keyframe is extracted only if it is considerably different from all other
already extracted keyframes. We refer to such a technique as sequential
keyframe extraction in a global context (SEGC). This extension has a
disadvantage, however, that keyframes are compared to each other in a
linear fashion: the first frame of a clip will always be extracted, as well as
those frames lying in the parts of the clip with strongly varying visual
content. Consequently, the extracted keyframes may capture parts of a
gradual transition preceding the clip, or meaningless frames showing a fast-
moving object with a considerable amount of (motion) blur. In this sense, the
SEGC techniques may result in keyframes of a low representative quality.

A better alternative to the SEGC techniques are the non-sequential
keyframe extraction (NSE) techniques, where all frames of a video are first
grouped together based on the similarity of their visual content. The
resulting keyframe set is then obtained by collecting the representatives of
each of the groups. To do this, the NSE techniques consider the keyframe
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extraction as a postprocessing step and mostly involve complex data analysis
procedures. Although the SEGC techniques allow for “on-the-fly” keyframe
extraction and are computationally less expensive than the NSE techniques,
a relatively high complexity of NSE techniques is compensated by the fact
that they are more sophisticated and capable of maximizing the
representative quality of keyframes while minimizing their number.

A typical way of approaching keyframe extraction in the NSE fashion is
by applying the theory and tools for data clustering [Jai88]. The frames of a
video are first grouped into clusters, each containing the frames with similar
visual content. Taking again the dialog-like video clip as an example, two
clusters would be sufficient for grouping together all frames belonging to
each of the content components A and B. Then, by representing each cluster
by its most representative frame, a minimum-size set of two keyframes could
be obtained, which optimally summarizes the given dialog video.

Since in the clustering-based approach the resulting number of keyframes
is dependent on the number of clusters found in the data, the problem of
finding the most suitable abstract for a given video becomes the one of
finding the optimal number of clusters in which the frames of a video can be
grouped. The main difficulty here is that the prior knowledge regarding the
optimal number of clusters is, generally, not available and that this number
needs to be determined automatically. In the approach of Hanjalic and Zhang
[Han99b], the cluster validity analysis [Jai88] was applied to estimate the
underlying cluster structure of the frames in a given video clip. First, a
partitional clustering method is applied N times to all frames of a clip. The
prespecified number of clusters starts at 2 and is increased by 1 each time the
clustering is applied. In this way N different clustering possibilities for a
video clip are obtained. The optimal number of clusters is found by
computing a cluster separation measure (e.g. Davies and Bouldin
[Dav79]) for each clustering option, and then by searching for the
distinguishable local minima in the curve.

Now that we have an idea how to extract keyframes from the video clips
that are to be compared, we could again use the feature sets V known from
the context of image retrieval, and apply the same methods that were
discussed before in the context of frame-to-frame clip comparison. However,
as the visual content redundancy between the keyframes is minimized, the
effects due to motion, zoom, occlusion or the view-point change can cause
only a partial similarity, even for the keyframes of semantically related clips.
This calls for more sophisticated methods for keyframe-based clip
comparison that are sensitive to the appearance of a sufficient amount of
similar elements of the visual content in two clips, but, at the same time,
allow for possible variations in this content from one clip to another.
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Figure 3-9. Comparing clip m with clip n by matching HxW pixel blocks from each keyframe
of clip m with clip image n. Clip images m and n had 2 and 3 keyframes, respectively.

Hanjalic et al. [Han99a] merge the keyframes extracted per clip into one
large variable-size image, clip image, which is then divided into the blocks
of HxW pixels. Each block is now a simple representation of one visual-
content element of the clip. Since one cannot expect an exact clip-to-clip
match in most cases, and because the influence of irrelevant visual content
details should be as small as possible, a feature set V is chosen that describes
the HxW blocks globally. The vector V consists here of the components of
the average color of the block. The linear L*u*v* color space is used in
order to be able to compare the average block colors using a simple
Euclidean distance. Although the visual content is averaged per block, it is
still possible to compare the clips in detail, as the block dimensions are
sufficiently small. In order to minimize the sensitivity of the used color
feature to changes in the lighting conditions in different clips, color
in variance models can be applied [Sme00].

For each pair of clips m and n, with m<n, we would now like to find the
mapping between the HxW blocks and from the clip images m and n,
respectively, such that
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each block in a keyframe of clip image m has a unique
correspondence to a block in clip image n. If a block has
already been assigned to a block of a keyframe belonging to clip
image m, no other block of that keyframe may use it. All blocks
are only available again when a new keyframe of clip k is to be
matched. Figure 3-9 illustrates this in more detail.

the average distance in the L*u*v* color space between
corresponding blocks of the two shot images is minimized:

where is Euclidean distance between the three-dimensional
average color vectors of the blocks and and where all possible
block combinations are given by the first item.

As the minimization (3.22) is a problem of high combinatorial
complexity, we can follow a suboptimal but more efficient approach. There,
the blocks of a keyframe of clip m are matched in the unconstrained way
in shot image n starting with the top-left block in that keyframe, and
subsequently scanning in a line-by-line fashion to its bottom-right block. If a
block has been assigned to a block it is no longer available for
assignment until the end of the scanning path. For each block the
obtained match yields a minimal distance value, This procedure is
repeated for the same keyframe in the opposite scanning direction, i.e. from
bottom-right to top-left, yielding a different mapping for the blocks and a
new minimal distance value for each block, denoted by On the basis
of these two different mappings for a keyframe of clip m and the
corresponding minimal distance values and per block, the final
correspondence and actual minimal distance per block is constructed
using the following set of rules:

RULE 1: if

RULE 2: if and is the lowest
distance value measured for the assigned block in the clip image n
(one block in clip image n can be assigned to two different blocks
in a keyframe of clip m: one time in each scanning direction).
Otherwise, we assign
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RULE 3: if and is the lowest
distance value measured for the assigned block in the clip image
n. Otherwise, we assign

Here, the symbol stands for a fairly large value, indicating that no
meaningful best match for a block could be found. The entire procedure
is repeated for all keyframes of clip m, leading to one value for each
block of clip image m.

Finally, the average of the distances between the B best-
matching blocks (those with lowest values) in the clip image m is
computed as the final inter-clip dissimilarity value:

The reason for taking only the B best-matching blocks is that two clips
should be compared only on a global level, thus allowing for inevitable
small changes in visual content within a semantic segment, which are of no
influence on the content coherence. The dissimilarity value (3.23) can then
be transformed into the similarity S(m,n,V), which was used in the
expressions for computing content coherence defined before. For instance,
we can first normalize the dissimilarity D(m,n,V) by the value of the
maximum possible color difference between two blocks, and then apply the
formula S(m,n,V) = 1 - D(m,n,V).

3.4.1.2 Clip similarity based on video mosaics

Extracting good keyframes to represent all important aspects of the visual
content of a clip is not easy, especially in cases where this importance is
difficult to determine. To illustrate this, we consider the example in Figure
3-10, showing the frames of a fictive video clip in which a foreground object
(“car”) passing along a complex scenery (“countryside”) is tracked by the
camera. As a consequence, the camera pans along the scenery, introducing
new elements into the visual content with each new video frame. This makes
it difficult to decide where the important aspects of the visual content appear
that, when captured by keyframes, would provide relevant information for
comparing this clip with another one containing the elements of the same
“countryside”. Another problem we encounter with the clip in Figure 3-10 is
that the foreground object blocks significant parts of the background in all
frames, and thus hides information that may be valuable for clip comparison.
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Figure 3-10. An example of a mosaic generated for a clip that is characterized by a long
camera panning along a complex scenery
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An alternative to the keyframe-based representation of the clip of the
above example is to generate a mosaic. A mosaic is a single image generated
from all frames of the clip. Typically, frames are aligned and projected on
the mosaic image based on the information about the camera-induced
displacement of the visual contents of these frames relative to the visual
content of a reference frame. During this process, moving objects are usually
masked out, which results in a mosaic containing only the entire static
background. As shown in Figure 3-10, masking out the “car” object
eliminates the effects of occlusion and reveals the complete information
about the background “countryside”.

In the first step of the mosaic generation process, one of the frames of the
clip is selected as a reference frame. The mosaic plane will be the plane of
this reference frame. Then, the (projective) transformations [Har01] are
generated between successive frames of the clip, mapped to the coordinate
system of the reference frame, and then used to project the frames onto the
mosaic plane. The value of a pixel in the mosaic image is determined, for
instance, by the median value of all pixels mapped onto this pixel [Ira96].
When generating a color mosaic, however, computing the median of each
color channel could result in a color that was not originally present in the
clip. To prevent this, one can first convert all frames of the clip into grey-
level images while keeping the pointer from each grey-level pixel to its
original color. Then, for each pixel in the mosaic, the color is selected that is
pointed by the median grey-level value of all frame pixels mapped to this
mosaic pixel [Ane02]. Finally, a method for outlier rejection (e.g. [Ira96])
can be applied to detect and mask out all moving objects. This is not only
good for revealing the static background originally hidden behind moving
objects, but it also improves the accuracy of the transformations generated
between the successive frames.

Just like comparing keyframe sets, comparing the mosaics of video clips
is, generally, not an easy task. Different variations in the visual contents
across the clips will result in mosaics that differ in size and shape. Also, due
to varying viewpoints, zooms and lighting conditions, the same scenery may
appear different across several mosaics. Finally, as not every shot taken at a
particular physical scene covers the whole scene, some mosaics of this
scenery may contain parts that are not present in the mosaics of other shots
showing the same scenery.

In view of the above, the problem of comparing the mosaics can be
approached in a similar way as the problem of comparing keyframe sets,
namely, by searching for a sufficient amount of similar visual material in the
mosaics of different clips. We illustrate this on a simplified version of the
method proposed by Aner [Ane02], where the mosaics are compared in a
coarse-to-fine manner. Figure 3-11 shows the major steps of this method.
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Coarse matching

In the coarse matching step, the portions in the mosaics x and y (Figure 3-
11a-b) are detected that correspond to the same part of the scenery. This is
done by coarsely aligning the sequences of vertical strips taken from each of
the mosaics. For this purpose, a vertical strip of the mosaic x is compared
with each vertical strip of the mosaic y. Since one cannot expect the visual
contents of strips from different mosaics to be fully similar to each other,
strips are compared block-wise. This results in a block-to-block distance
matrix B where each element B[k,l,V] represents the dissimilarity between
the block k of the mosaic x and block l of the mosaic y (Figure 3-11c). The
feature set V used to compare the blocks of the strips consists of a color
histogram in the HSI (H-Hue, S-Saturation, I-Intensity) color space [Gon93].
Blocks are compared by applying the norm to their HSI color histograms.
We then search for the sequence of matrix entries along the main diagonal in
B and along the diagonals parallel to it that satisfies the following two
conditions:

It is longer than the prespecified minimum number of blocks T,
Of all other diagonal paths longer than T, it has the lowest average
of matrix entries considered.

The threshold T defines the minimum acceptable height of the matching
portions in two mosaics mentioned above. Aner sets the value of T to 2/3 of
the original frame height. This choice is motivated by cinematography rules
[Ari76].

The diagonal sequence of entries of the matrix B satisfying the above
conditions indicates the number of blocks in both strips that match well. We
refer to this sequence as the “best diagonal” (Figure 3-11c). The average of
the block-to-block differences B[k,l,V] along the “best diagonal” is then used
as the dissimilarity Y(i,j,V) between vertical strip i in the mosaic x and
vertical strip j in the mosaic y (Figure 3-1le). The values Y(i,j,V) form the
matrix where, again, the “best diagonal” is found to mark the sequences of
strips in both mosaics showing the same parts of the scenery (Figure 3-11f).
Here, another threshold T is used that determines the minimum acceptable
width (number of consecutive vertical strips) of the matching portions in two
mosaics. Aner sets this threshold equal to the width of a video frame.

The “best diagonal” in the matrix Y(i,j,V) of the mosaics x and y
determines the candidate matching portion in these mosaics. In order to
check whether the mosaic portions marked by the “best diagonal” indeed
show the same part of the scenery, a threshold found experimentally is
applied to the matrix entries Y(i,j,V) along the “best diagonal”. If a value
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Y(i,j,V) exceeds this threshold, the mosaics are considered dissimilar and are
discarded from further processing.

Fine matching

Mosaic pairs that are not discarded in the previous step enter the fine
matching procedure, where the cropped versions of the mosaics are used.
The lengths of the best diagonals of the matrixes B[k,l,V] and Y(i,j,V)
determine the portions in both mosaics that are assumed to represent the
same part of the scenery. Then, the mosaics are cropped by keeping only the
matching portions and by discarding other parts of the mosaics (Figure 3-
11g-h).

In the fine matching stage, the method for aligning vertical strips is
applied to the cropped versions of the mosaics, with thinner strips than those
used in the coarse matching step (Figure 3-11i). The result of the process is,
again, the “best diagonal” containing the matrix entries that serve as the
basis for computing the actual dissimilarity value D(x,y,V) for the mosaic
pair considered, and for the corresponding clips x and y. Again, ways can be
found for transforming the value D(x,y,V) into the corresponding similarity
value S(x,y,V) that can be applied in the formulas for clip comparison we
introduced before.

Figure 3-11. An illustration of the mosaic matching process [Ane02]
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3.4.2 Similarity between clips based on accompanying text

For some video genres, like, for instance, TV news or documentaries, it
is not possible to find a visual feature set F securing the computability of the
content coherence. The most promising way of searching for similarity links
between the clips of these programs is to analyze the topic similarity of the
text accompanying these clips. This text can be obtained by transcribing the
speech appearing in the audio track of the video, or by using closed captions
where available.

Figure 3-12. Clip detection for text-based news video parsing [Han01]

Just like in high-level video parsing based on visual content, where we
exploit the visual similarity of clips to link them together, we here search for
the links between clips by investigating the similarity of the topics covered
by their texts. When defining the notion of the “video clip” in Section 3.2 we
argued that if the semantic segment boundaries coincide with shot
boundaries, shots can be used as elementary clips serving as the basic
temporal units for high-level video parsing. While this is often the case in
movies, a topic break in a news program can occur in the middle of an
anchorperson shot, as the news reader may move from one subject to the
next, for instance, after briefly pausing in reading. Moreover, a news topic
usually lasts for a temporal segment consisting of several shots. Clearly, in
this case temporal units other than shots need to be considered in the clip-
linking process.



PARSING A VIDEO INTO SEMANTIC SEGMENTS 87

For determining the optimal clip boundaries for a particular video genre,
domain knowledge can be used. As illustrated in Figure 3-12, we may search
for the boundaries of these clips (referred to as report segments) in news
programs at places where report boundaries can be expected most, that is, at
the beginning and end of an anchorperson shot, or at places where the news
reader makes longer pauses in speech [Han01], We will elaborate on the
scheme in Figure 3-12 in more detail in Section 4.2.2.

Generally, the problem of parsing a video into semantic segments on the
basis of text can be approached using the results of extensive research in the
areas of text (document) analysis and text (information) retrieval in the past
years and, in particular, in the field of text segmentation. Text segmentation
methods aim to automatically partition texts into semantically coherent units
based on, for instance, lexical cohesion [Koz93, Rey94, Hea97, Tak00,
Cho00, Uti01], linguistic features [Pas97], or topicality and cue-word
features [Bee99]. The techniques used for segmentation vary from TextTiling
[Hea97], via dotplotting [Rey94], semantic networks [Koz93, Fer02],
statistical models (HMM [Yam98], or Kullback-Leibler divergence
[Bee99]), local context analysis [Pon97] to latent semantic analysis [Fol98,
Cho01]. The specific approach to high-level video parsing that we have been
following in this chapter – the overlapping-links approach – allows us to
position our text-parsing problem even more precisely within the general
area of text analysis, namely, in the context of (story) link detection. Here,
the challenge is to determine whether two text documents can be linked by
the topic they discuss [All02, Fer02]. As treating the problems of text
analysis is beyond the scope of this book, we will limit the material
presented in this section to the main principles only, based on which the
development of the solutions to these problems can be approached.

The fundamental source of information describing the content of a text
document is the set of words that is used to create that document. In order to
compare the contents of two text documents, one can then simply find the
overlap between the corresponding word sets and use the size of that overlap
as a measure of content similarity. However, not all the words in a set are
equally descriptive of the content of a document. Many of these words are
also irrelevant and can therefore mislead our clip-comparison procedure.
Intuitively, the reliability of a comparison of two texts is likely to improve
considerably if the descriptive power of the words in each set is analyzed a
priori and if the information obtained through such analysis is taken into
account when computing the similarity between the sets.

The descriptive power of a word k for a given text document t can be
captured in a weight w(k,t) that is assigned to the word k and serves as
argument of the function computing the text similarity. In their survey on
Simple, proven approaches to text retrieval [Rob97] Robertson and Sparck
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Jones give the basic principles of computing the weights for words in text
analysis and retrieval problems. The weight for a word is, generally, a
function of the following three measures:

Word frequency,
Collection frequency,
Document length.

Word frequency f(k,t) is defined as the number of occurrences of a word
k in a text document t. Repetition of words has long been recognized as a
“coherence enhancer” [Tan89, Wal91, Hea97]: the more often a word occurs
in a document, the more likely it is to be important for that document. The
collection frequency C(k), also frequently referred to as the inverse
document frequency, measures how unique a word k is. It is, basically, the
(logarithmic) ratio of the total number of text documents considered and the
number of text documents in which the word k occurs. If a word appears
only in a few documents, its uniqueness is much higher than if that word
appears in many documents. As such, the collection frequency reduces the
influence - the weights - of irrelevant (common) words on the text
comparison process. Finally, the length of the document needs to be taken
into account in view of the intuitive argumentation that a word occurring the
same number of times in a short document and in a long one is likely to be
more valuable for the shorter one.

Various ideas have been proposed for combining the abovementioned
basic measures together into a reliable weight w(k,t). We illustrate the
weight computation process by formula (3.24), which has proven effective in
practical trials [Rob97]:

Here, L(t) is the length of the document t in words, normalized by the
average length of all documents considered. The tuning constants a and b
determine the influence of the word frequency and document length on the
total weight, respectively. Tuning is done mainly depending on the variety of
words in the texts being analyzed. While for short texts the collection
frequency is the most relevant component of the weight (3.24), other
components become more pertinent with increasing text size and increasing
variety in the corresponding word sets.

We now consider video clips m and n for which the word sets and
are available, and denote by K the set of words k occurring in both sets with
the weights and respectively. For comparing the clips m and
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n we can apply the cosine measure [Hea97, Kau99, Cho00, Fer02], which is
one of the most widely used metrics for computing the topic similarity of
text documents:

Clearly, the feature set V consists here of the weights w(k,t), which reveal
the semantic relations between the clips based on recurrence of relevant
words. This is the most generic way of comparing texts and can be applied
without restriction, regardless of the topic domains and the language of the
text. However, the performance of this rather simple approach in
establishing links between the clips of the same topic may not be optimal in
a general case, as the topic relation between the clips is not always revealed
by the occurrence of the same words in both clips. For instance, let W be the
fictive set of all words that can be found for topic T by analyzing a vast
number of training text documents. The set W is typically very large as one
and the same topic can be covered in a variety of ways and in different
contexts. Let further and be the subsets of W found in the texts of the
video clips m and n, both covering the topic T. Clearly, if the intersection of
the subsets and is insufficient, then the formula (3.25) will hardly be
able to reveal the topic similarity of the texts in the clips m and n.

A possible cause of the problem described above is that the suffix of the
word k may change in different contexts in which the word k is used.
Consequently, the recurrences of the word k in different texts will not be
recognized due to the variety of suffixes. A simple way to solve this problem
is to apply stemming to all the words entering the matching process. A
stemming algorithm [Lov68, Daw74, Por80, Pai90, Kro93] automatically
removes the suffixes from the words, thus leaving only the word origin
(stem) to be matched.

The topic-matching performance can further be improved by combining
the information related to word recurrence in both texts with the information
obtained by analyzing the occurrence of words that are dissimilar but
mutually related, either in meaning (synonyms) or with respect to a certain
topic [Hal76, Mor91]. Such information is typically contained in a thesaurus
or in a collocation network. A thesaurus can be seen as a dictionary in which
words with similar meanings are grouped together. In this way, a word k in
the subset that does not match directly any word in the subset can be
matched to any of the related words instead.
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The term “collocation” is widely used in linguistics and means the
“combination of words formed when two or more words are frequently used
together in a way that sounds correct”. 1 In a broader sense, we could also
use the term “collocation” to describe a combination of words that
frequently occur together in the text documents on one and the same topic.
For example, in a text on “volcanic activity”, we could expect joint
occurrence of the words “volcano”, “lava” and “eruption”.

A collocation network can be built by using the words as nodes and with
edges indicating the collocations. Each edge is marked by the cohesion
[Ras87] value, which is used to represent the strength of the collocation of
each two words. In this way, not only the word k found in the subset is
matched with the words in but also all the words selected from the
collocation network that are linked to the word k. One can, however, also be
a bit more selective and select only those words from the collocation
network that are linked not only to one, but to at least r words of the subset

[Fer98].
Each word p selected from the collocation network is assigned a weight

w(p,t) that will be used in the text matching process (e.g. in the cosine
measure (3.25)). This weight can be computed by collecting the
contributions of all words k from the text t that are linked to the word p.
Ferret [Fer98] first computes the contribution of the word k to the weight of
the word p as the geometric mean of the weight w(k,t) of the word k and the
cohesion value coh(k,p) of the link between the words k and p in the
collocation network. Then, the contributions of all words k are added up to
compute the weight of the word p:

Finally, we briefly address Latent Semantic Analysis (LSA) [Lan98] as a
powerful technique for reducing the influence of word choice in evaluating
the similarity of text documents. Compared to the techniques described
above, the LSA has the ability to correctly infer relations between words that
go much deeper (therefore the attribute “Latent Semantic”) than those
defined by a thesaurus or a collocation network. Namely, by simultaneously
analyzing the distribution and joint occurrences of the words in all available
text documents, the LSA is capable of inferring indirect semantic relations
between the words: two words may be put in relation to each other even if
they never occur in the same text document. In this sense, we may say that,

1 Definition adopted from Cambridge Dictionaries Online (http://dictionary.cambridge.org),
Cambridge University Press 2003



PARSING A VIDEO INTO SEMANTIC SEGMENTS 91

in the context of the collocation network, the LSA provides information that
could be used to modify the cohesion value coh(k,p) leading to a more
reliable weight (3.26).

Technically, the LSA is done by applying the truncated Singular Value
Decomposition (SVD) to the word-document matrix X. Each entry of this
matrix is the original (e.g. the thesaurus- or collocation-based) weight w(p,t)
of a word p in the document t, where p and t define the corresponding row
and column of X, respectively. Let the matrix X have the dimensions i x j,
where i stands for the number of words and j for the number of documents in
the collection. Applying the SVD to X results in the following
representation:

where the matrices U and Y are orthogonal, where with
r = min(i,j), and where are singular values. The first r columns of Y are
called the right singular vectors and the first r columns of U the left singular
vectors. The truncation of the SVD (3.27) is performed by approximating the
matrix X using the expression

where the matrixes and consist only of the first h singular vectors, and
where is the upper left h x h part of the matrix

The truncation step changes the entries in the matrix X such that some
weights w(p,t) increase while some other decrease compared to their original
values. These changes reveal the new information for evaluating the
importance of a word p that became available through the truncation of the
SVD: by only keeping a small number of the most important singular vectors
in U and Y, the truncation makes the semantic relations more “visible” as the
irrelevant information (noise) is greatly reduced [Li03]. Therefore, the
subspace kept after the truncation is able to show the latent associative
semantic relationships between words more clearly than the original
document space.

3.5 AUDIO-ASSISTED VIDEO PARSING

We explained in the previous sections how visual and text features can be
used to compute the similarity between video clips and to link them for the
purpose of detecting semantic segment boundaries. Although it may seem
straightforward to apply the same reasoning to audio features as well, these
features appear not to be as reliable for high-level parsing when used alone,
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compared to visual and text features. As stated by Bordwell and Thompson
[Bor97], “in ordinary life sound is often simply a background for our visual
attention, ... We are strongly inclined to think of sound as simply an
accompaniment to the real basis of cinema, the moving images”.

However, while audio may not be suitable for parsing when used alone,
the quality of the parsing result obtained using visual or textual features can
still be improved by using the information contained in the accompanying
audio stream. For instance, the sound track of a dialog scene consisting of
the interchanging speech segments originating from the persons participating
in the dialog will most likely differ from the audio track of another scene
where we see a nice landscape and hear only the accompanying music. Also,
the change of topics in a TV news program may be characterized by the
change of newsreaders or by silence intervals in speech, in which case the
detection of changes in the properties of the audio track could make the
detection of this topic break more robust.

An example of the possibility to use silence intervals for helping a text-
based video parsing process was already given in the previous section
(Figure 3-12). A typical example of where audio information may provide
help in video parsing based on visual features are the ambiguous semantic
segment boundaries in movies, at places where the assumption about the
coherence of the visual content along an episode fails. This problem is quite
realistic, for instance, due to the frequent use of “establishing” and “closing”
shots to introduce and end an episode, respectively. The composition of
these shots is often defined by the cinematic rules of concentration and
enlargement [Wan01]. The concentration rule says that the content of an
episode is to be introduced by a long distance shot, after which the camera
progressively zooms in on the main objects and characters of an episode.
The enlargement rule is the reverse of the concentration rule: the camera
progressively zooms out from the close-ups of the main objects of the
episode to show once again the general context of the episode content before
switching to another episode. Clearly, due to the strong zooming actions, the
visual contents of the establishing and closing shots of an episode may differ
considerably from other shots of the episode. What effect this has on the
video parsing approaches explained before will be illustrated on the example
of the fast-forward linking approach.

We investigate a series of shots a to j, as illustrated in Figure 3-13. Let
the boundary between episodes m and m+1 lie between shots e and f. We
now assume that the shot e, although belonging to the episode m, has a
different visual content than the rest of the shots in that episode.
Consequently, the content consistency could be followed by overlapping
links in m up to shot d, so that the episode boundary is found between shots
d and e. If the shot e contains enough visual elements also appearing in the
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episode m+1 so that a link can be established, e is assumed to be the first
shot of episode m+1 instead of shot f. This results in a displaced episode
boundary. However, if no visual similarity link can be established between
shot e and any of the shots from the episode m+1, another episode boundary
is found between shots e and f. Suppose that f is an establishing shot of the
episode m+1, again no content-consistency link can be established from it.
Another episode boundary is found between shots f and g. If the linking
procedure can now be started from shot g, then g is considered to be the first
shot of the new episode m+1. In this case, not a precise episode boundary is
found but a boundary that is spread around the actual episode boundary,
where all places where the actual episode boundary can be defined are taken
into consideration. Consequently, the shots e and f are not included in the
episodes. Clearly, if the actual episode boundary in this example is
characterized by a strong change in the properties of the accompanying
audio track, then this information could be used to remove the ambiguity
resulting from the visual content analysis alone.

Figure 3-13. An illustration of an ambiguous episode boundary in a movie

Just like in the case of the visual and text scene boundaries introduced in
Sections 3.4.1 and 3.4.2 to indicate substantial changes in the visual or
textual content, respectively, we can also speak of an audio scene boundary
marking a substantial change in the properties of the audio track of a video.
Then, the confidence that there is a semantic segment boundary at the same
place as a visual or textual scene boundary can be enlarged if an audio scene
boundary is found there (or in the close vicinity) as well. In the remainder of
this section we present two illustrative approaches to finding audio scene
boundaries in video.
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3.5.1 Audio scene boundary detection by sound
classification

The detection of audio scene boundaries can be approached by
classifying the elementary segments of the audio track into those
characterized by, for instance, different speakers, music, environment sounds
and silence [Sar97, Boc99, Jia00]. As illustrated in Figure 3-14, audio scene
boundaries are then marked by the time stamps surrounded by elementary
audio segments that belong to different audio classes. The modules in Figure
3-14 can be realized using a variety of existing and practically proven
methods for speech/non-speech classification, speaker change detection and
audio segment classification in general. As these topics are beyond the scope
of this book, we only refer to relevant literature where information about the
appropriate features, tools and methodologies for performing the above
classifications can be found [Rab78, Pat96, Lu02b].

Figure 3-14. A conceptual overview of the audio scene detection method as proposed by
Jiang et al. [Jia00]

Lienhart et al. [Lie99] first divide audio track of a video into segments
containing foreground or background sounds. Then, a subsequent analysis
step is applied where the segments containing foreground sounds are parsed
using audio cuts that delimit elementary segment parts with coherent sound.
Background-sound segments are disregarded in this second step as they are
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assumed not to carry semantically relevant information. The changes of
audio properties along these segments are therefore irrelevant for marking
semantic segment boundaries. Finally, as illustrated in Figure 3-15, the set of
audio scene boundaries is created by combining the set of time stamps
corresponding to audio cuts and those corresponding to transitions between
the background and foreground audio segments.

Figure 3-15. Detection of audio scene boundaries based on foreground-background sound
classification [Lie99]

Technically, background-sound segments are distinguished from the
foreground ones by analyzing the loudness of the audio signal. This idea is
based on the assumption that whenever sounds in a video are meant to be in
the background, their loudness is reduced substantially. To maximize the
performance, Pfeiffer et al. [Pfe99] propose to use a loudness measure that is
based on psycho-acoustic knowledge and therefore coincides with the
loudness perceived by humans.

Audio cuts in a foreground sound segment are detected by performing
frequency analysis in a sliding window moving along a segment. At each
window position the error is computed between the actual frequency
distribution and the frequency distribution predicted on the basis of signal
properties at all previous positions of the sliding window since the last
detected audio cut. An audio cut is detected wherever the error exceeds a
predefined threshold.

3.5.2 Audio scene boundary detection by analyzing
dominant sound sources

Sundaram and Chang [Sun00] introduce the concept of an audio scene as
“a semantically consistent sound segment that is characterized by a few
dominant sources of sound”. An audio scene change occurs when the
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majority of the dominant sound sources change. Various features of the
audio signal can be used to characterize dominant sound sources [Pat92,
Rab93, Sch97, Sri99], among which the following are proposed in [Sun00]:

Cepstral flux,
Multi-channel cochlear decomposition,
Cepstral vectors,
Low energy fraction,
Zero-crossing rate,
Variance of the zero-crossing rate,
Spectral flux,
Spectral roll-off point,
Energy,
Variance of energy.

We now consider the situation as illustrated in Figure 3-16. The figure
shows the memory window of the length M, the time stamp of the audio
scene boundary and the analysis window of the length T that has just passed
the boundary and lies in its entirety in the new audio scene. The memory
window can be said to contain the total information used by a listener
(person) to conclude whether an audio scene change has occurred. The
analysis window represents the attention span – the most recent data in the
memory of the listener. Basically, the information contained in the attention
span is compared with the information in other parts of the memory window
to check for the presence of an audio scene boundary at any time stamp
captured by the memory window.

Figure 3-16. Illustration of the audio memory model [Sun00]
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We first compute the feature values in each audio frame of the analysis
window. These measurements result in finite time sequences of values for
each feature per frame. The term “frame” stands for the chunk of data of
100ms duration. Then, for each of these time sequences, the optimal
envelope fit is found, which characterizes the coarse time properties of a
feature per frame. In other words, we try to find the optimal fit (in terms of
an appropriate distance function) between each time sequence and one of the
prespecified function types, such as constant, linear, quadratic, exponential,
hyperbolic, and sum of exponentials. Each of these types, except the sum of
exponentials [Sun00], can further be monotonically increasing or decreasing.

The previous two steps are repeated for all positions of the analysis
window obtained by moving the window to the left by and along the
entire memory window. Sundaram and Chang set to 1ms. For checking
the presence of a boundary between two audio scenes in Figure 3-16, a
function can be defined that determines the correlation among all
time sequences measured for a feature i at the initial position of the analysis
window (start at and at its position after m shifts to the left. A simple way
of defining this correlation function is

where is the function of the envelope fits of the feature i for the
duration to Further, and d is an appropriate distance
function with the value range [0,1] evaluating the dissimilarity in the
envelope fits at the consecutive positions of the analysis window. If there is
a segment boundary at the time stamp as indicated in Figure 3-16, then the
correlation function (3.29) is expected to decay rapidly as a function of m. If
no boundary is present at that place, the correlation function will remain flat
due to the assumed stationary dominant sound sources in an audio scene.
The correlation decay for feature i can be modeled as the decaying
exponential

with being the exponential decay parameter that has been selected such
that the exponential function (3.30) best fits the changes in the correlation
values (3.29) after m shifts of the analysis window. Since determines the
speed of the decay, a good indicator of the change in the audio properties at
the time stamp is the sum of all coefficients resulting from the
approximation (3.30) for the corresponding shift per feature i. Audio
scene boundaries are then detected simply by finding distinguishable local
maxima of this sum.
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3.6 REMARKS AND RECOMMENDATIONS

Although the problem of high-level video parsing is considerably more
complex than the one of shot-boundary detection, the existing parsing
concepts that we outlined in this chapter are already capable of producing
acceptable results. This can be seen in part from the comparative study of
these concepts performed by Vendrig and Worring [Ven02]. Although they
consider movies and situation comedies only, and base the parsing on visual
features alone, their results are indicative of the usefulness of the four
parsing concepts introduced in Section 3.3 from the point of view of the
user, or in this specific case, a “video librarian”.

In the scenario considered in [Ven02], the user has the task to manually
restore the errors made by an automatic parsing method. The criterion used
to evaluate an automatic parsing method is therefore made related to the
effort required for manual error restoration. This evaluation criterion is
defined quantitatively as

Here, the value of G can be seen as the gain for the user in terms of the
reduction in the manual work that was originally required to parse a video
but that is now done by an automatic method. The value A represents the
total effort of the librarian to correct the errors of an automated parsing
method, while is the effort required in the worst case, that is, when the
automated parsing mechanism does not detect any semantic segment
boundaries in a given video. Clearly, the higher the gain G, the more useful
the automated parsing mechanism.

The results reported in [Ven02] were quite good for all four concepts. For
most test sequences, the method of fast-forward linking performed best, with
the gain reaching 95%. A bit lower but more consistent performance over all
test sequences was found for the method of time-adaptive grouping. The
method of time-constrained clustering showed the best performance in terms
of the total number of parsing errors. However, due to the magnitude of
these errors, considerable effort was required to correct them. Therefore, the
gain factors were generally lower compared to other methods, although, still,
a gain of up to 77% could be reached. Last but not least, a gain of up to 91%
was reached using the method of content recall, which, in view of its overall
performance, is comparable to the method of time-adaptive grouping.

The good results reported above should not, however, slow down the
search for ways of introducing more precision, recall and robustness in the
methods for high-level video parsing. While the basic principle of content
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coherence revealed by the overlapping links between elementary video clips
seems to work well, one issue still deserves our attention, namely, how to
successfully evaluate the content similarity of two video clips. Content
similarity computation typically involves three factors:

selecting the relevant modalities of the video (audio, visual, text)
that carry the semantic information,

selecting the feature set F securing the computability of the content
coherence, and

selecting the optimal method of representing the clip data for
efficient and effective comparison.

Inspiration for further research on the above topics can be drawn from
the material presented in this chapter, but also from many other ideas for
high-level video parsing proposed so far and included in the literature list
below.
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Chapter 4

VIDEO INDEXING AND ABSTRACTION
FOR RETRIEVAL

4.1 INTRODUCTION

The parsing techniques discussed in the previous chapters have the task
to reveal the temporal structure (distribution) of the content in a parsable
video and mark the boundaries of the temporal content units that may be
interesting for retrieval later on. Such units can also be found in a non-
parsable video like‚ for instance‚ the segments showing suspicious human
behavior in a continuous surveillance video recording.

In order to make the content of an arbitrary temporal video segment
(video clip) easily accessible to the user‚ two additional video content
analysis steps are required‚ namely

Video indexing‚
Video abstraction.

The video indexing step involves searching in a given video clip for the
appearance of the content that is described by a content label. Typically‚ a
label of this kind is prespecified by the user and represents the type of
content the user is interested in having extracted from video. For instance‚
the user may want to access all reports in a news program where the topics
labeled as “Parliament”‚ “United Nations”‚ “Amsterdam” or “Foreign
politics” are discussed. In a movie‚ the user may want to search for all
episodes labeled as “action” or “romance”‚ and in a wildlife documentary for
all scenes with the content described by the labels “hunt” or “running lion”.
If the content specified by the label is found in a video clip‚ then this clip is
indexed (annotated‚ labeled) by this label and becomes easily accessible to
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the user. For instance‚ all episodes containing a car chase in a collection of
action movies can quickly be retrieved by simply “clicking” on the label
“Car chase” in an adequate user interface.

Figure 4-1. Video indexing and retrieval using predefined content labels

The techniques for automatically assigning a content label to a video clip
are referred to as video indexing or annotation techniques. Figure 4-1
illustrates the process of video indexing on the basis of three labels “News
report on topic T”‚ “Dialog” and “Score in a soccer game”. After being
specified by the user‚ these labels are first used to index the corresponding
clips in the video collection‚ and then used again later on in the process of
retrieving these clips from the collection.

An interface employing index terms (content labels) predefined by the
user is most intuitive for retrieving the desired pieces of a video collection.
A simple example of such an interface is shown in Figure 4-2 and enables
topic-based interaction with a broadcast news archive [Han01]. On the left
side‚ the labels are listed that represent the topic categories being of interest
to the user. Each label provides links to all news reports found in the archive
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that are classified under the corresponding topic category using an
appropriate indexing method. On the right side of the interface the space is
left for displaying the retrieval results.

Clearly‚ in the case of a large news archive‚ an index term in Figure 4-2
may point to a vast number of news reports not all of which are of interest to
the user at the given moment. Efficiently finding the report(s) of interest in
this case can be made possible‚ for instance‚ by predefining the content
labels more specifically prior to the indexing process‚ or by generating a
hierarchical tree of index terms that is capable of guiding the user from more
general semantic concepts (e.g. “Olympic Games”)‚ through more specific
ones (e.g. “Winter Olympic Games 1984”)‚ to very detailed ones (e.g.
“Alpine skiing‚ Ladies‚ Slalom‚ First Race‚ Skier A”). Generating such
hierarchical trees is‚ however‚ not an easy task in view of an enormous
number of different possible semantic concepts at each tree level‚ but also in
view of a high number of complex indexing steps required for the defined
labels. Moreover‚ browsing through such extensive trees of terms is not
necessarily the most user-friendly way of interacting with a video collection‚
especially for the users who were not involved in the process of defining the
terms and for whom therefore not all the terms may be meaningful.

Figure 4-2. An example of a simple user interface for interacting with a broadcast news
archive on the basis of content labels predefined by the user and originally employed for
indexing purposes [Han01]
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Figure 4-3. An illustration of a hybrid video browsing interface. While index terms (labels)
are used for topic preselection in the first interaction steps‚ (audio)visual abstracts may be
employed at lower levels of the content representation hierarchy to speed up and ease the
interaction.

A better alternative for organizing interaction with a large video
collection at different content resolutions may be to combine index terms
with (audio)visual abstracts of temporal video segments. For instance‚ while
a first selection of potentially interesting video clips can be obtained on the
basis of index terms‚ further selection steps can be based on looking at the
content of video abstracts. There are several advantages of this approach
compared to the approach based on using index terms only. First‚ as “an



VIDEO INDEXING AND ABSTRACTION FOR RETRIEVAL 111

image is worth more than a thousand words”‚ the size of the hierarchical tree
can be reduced considerably by using (audio)visual information at lower tree
levels. In the example illustrated in Figure 4-3‚ video abstracts generated as
collections of representative video frames (keyframes) are used to replace
entire subtrees of terms that may be necessary to distinguish and describe in
detail all reports in the video collection linked to the label “Euro”. In this
way the number of steps leading to the video clip of interest may be reduced
considerably. Second‚ a hybrid interface of this kind is more suitable to serve
different users‚ also those not being involved in the label definition process.
Namely‚ while the high-level semantic concepts represented by index terms
at the top of the tree (e.g. video genres‚ general and specific topics found
within these genres‚ as indicated in Figure 4-3) are meaningful and relevant
for a broad range of different users‚ the subjectivity of the indexing increases
with each further tree level. In the extreme case‚ the index terms at the
bottom of the tree may only be informative and meaningful for the person
who defined them. However‚ if the (audio)visual video abstracts are used at
lower tree levels instead‚ they can unify many different search requests in a
single representation. Finally‚ video abstracts can be generated automatically
without any user input.

In this chapter we provide an insight into the principles and possibilities
for developing video indexing and abstraction techniques‚ which can enable
an efficient and effective interaction with a large video collection.

4.2 VIDEO INDEXING

In general‚ the problem of video indexing can be seen as a pattern
classification problem. In this sense‚ an automated video indexing algorithm
could be developed that assigns a label to a video clip according to the
features (properties) of the data found in the clip. These properties jointly
form a pattern that is used by the algorithm to investigate the presence of a
link between the data and the content described by the label.

A rather simple but illustrative example of searching for patterns in video
data for the purpose of video indexing is the early approach of Yeung and
Yeo [Yeu97a-b]. There‚ the results of time-constrained clustering of video
shots (see Chapter 3) serves as the basis for classifying the series of shots as
dialog or action‚ events using heuristic rules.

In the first step‚ all shots belonging to the same cluster are assigned one
and the same cluster label. Then‚ by replacing each shot of a video by its
corresponding cluster label‚ the entire video can be represented as a series of
labels‚ that is‚
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In the second step‚ the label sequence (4.1) is examined for the
appearance of patterns that correspond to dialogs or actions. Yeung and Yeo
use the term “dialog” to describe “an event of actual conversation or a
conversation-like montage of two or more concurrent processes” [Yeu97b].
Such events mostly consist of recurring shots showing either the parties
involved in a conversation or the segments of concurrent processes‚ possibly
interspersed by a number of “noise” shots (e.g. the establishing shot or the
shots of other parties not participating in a conversation). The pattern
indicating a dialog event is detected using the following set of rules:

a maximally long pattern of alternating cluster-labels is found‚
each of the most dominant cluster labels occurs at least twice‚
the number of “noise” cluster labels does not exceed a prespecified
maximum.

Two patterns revealing the presence of the dialog event are indicated in
bold in the example shot sequence (4.2) with the cluster-label F being the
“noise” label.

Yeung and Yeo refer to an action event as a “progressive presentation of
shots with contrasting visual contents to express the sense of fast movement
and achieve strong emotional impacts” [Yeu97b]. The action segments are
primarily used to rapidly unfold the story and are typically characterized by
a highly dynamic scenery and camera work. In view of this‚ the rule set
introduced by Yeung and Yeo to find action segments primarily searches for
the longest possible patterns characterized by the minimal repetition of
cluster labels: the boundaries of an action event are found when the number
of distinct cluster labels appearing in a shot sequence becomes sufficiently
close to the total number of shots in that sequence. In the example (4.3) an
action segment is marked (in bold) consisting of 11 shots with 9 distinct
shots. Recurrences of labels B and E serve to indicate that certain minimum
repetition of the video content across an action segment is allowed.

In the video-indexing example described above the presence of a
semantic concept (dialog or action) was inferred on the basis of
measurements (clustering) performed on video shots and by using a suitable
set of rules. The rule-based inference is only an example of many knowledge
inference techniques that are known in the theory of pattern classification
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and that may be used for the purpose of video indexing. Further‚ the
information serving as input for the inference process described above is
rather simple‚ as not more than the global similarity of the visual contents in
consecutive video shots is used. For detecting dialogs and actions in a more
robust way in a variety of videos‚ however‚ and for revealing more complex
semantic concepts from data in general‚ sophisticated mechanisms for
content modeling are required.

4.2.1 Content modeling

Given a particular video clip‚ its content can be indexed in various ways.
Although the number of possible content aspects‚ for which labels could be
defined‚ is infinite‚ most of these aspects fall into one of the three levels in
the general hierarchy of semantic concepts‚ as illustrated in Figure 4-4.

The top of the hierarchy is characterized by “topics” describing the most
general content aspects of a video clip. A topic is typically defined at the
level of a semantic segment‚ like the episode in a movie or a story unit
(report) in a broadcast news program. Examples of topic labels are the
“weather” news report and an “action” movie scene. However‚ topics can
also be defined for the segments extracted from non-parsable videos‚ such as
“suspicious human behavior” in a surveillance video.

The middle level of hierarchy consists of “events”. Events are narrower
semantic concepts than topics. They evolve over time and are characterized
by the dynamics of the audiovisual content‚ like for instance‚ object(s)
transformation and motion‚ camera work and temporal audiovisual effects.
Events can be seen as the components of a “topic” semantic concept. For
instance‚ an “action” scene in a movie may be characterized by the events of
“explosion”‚ “car chase”‚ “helicopter flying” and “gunshots”. Similarly‚ the
topic “suspicious human behavior” will typically consist of the events
corresponding to specific gestures‚ human-body motion or audio effects like
screaming or shouting. In some video genres‚ however‚ no meaningful topics
can be defined. Then‚ the events can be seen as the highest semantic
concepts for indexing in these genres. A good example of such a case is a
soccer broadcast in which the hierarchy of content labels typically does not
go higher than the events of‚ for instance‚ “goal”‚ “corner kick”‚ “free kick”
or “red card”.

The lowest level of the hierarchical structure in Figure 4-4 contains the
“sites”‚ that is‚ locations where “events” take place‚ and “objects” that
participate in the events. Examples of site labels are “indoor”‚ “outdoor”‚
“cityscape”‚ “landscape”‚ “mountain” and “forest”‚ while object labels can
be thought of as “car”‚ “helicopter”‚ “building”‚ “face” or “person A”. Here‚
only the static site and object instances are considered. Any site or object
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dynamics considered by the label‚ like object motion or site transformation
(e.g. rising sun‚ erupting volcano) will transfer the label to the level of
“events”.

Figure 4-4. General hierarchy of semantic concepts

In order to be able to automatically assign a content label to a video clip‚
content models need to be developed that associate the features computed
from data with semantic concepts. Then‚ the fit between a given video clip
and the content model developed for the label X can be used as an indication
of the presence of the semantic concept X in the clip and‚ consequently‚ as
the criterion for assigning the label X to that clip.

The hierarchy in Figure 4-4 suggests a bottom-up approach to content
modeling. The lower-level semantic concepts can be modeled first and then
the obtained results can be aggregated into the models of the higher-level
semantic concepts. In other words‚ “events” could be modeled on the basis
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of the models of “sites” and “objects”‚ and the “topic” models can be
expressed as functions of the models of different “events”. Due to a broad
range of complexity of semantic concepts within each level of hierarchy‚ this
bottom-up modeling approach is also applicable to the semantic concepts of
the same kind. For instance‚ the low-level concept “Outdoor” can contain a
number of less complex semantic concepts belonging to the same level of
hierarchy in Figure 4-4‚ such as “Sky”‚ “Snow” or “Water”. In the same
way‚ we can distinguish between more and less complex “events”‚ like‚ for
instance “Car chase” compared to “Moving car”‚ or “Hunt” compared to
“Fast moving animal”.

For modeling semantic concepts at different levels of hierarchy the
theory and tools of pattern classification can be applied. While modeling the
“static” concepts of sites and objects should be approached using static
pattern recognition techniques‚ “events” require the tools for time-series
classification that optimally capture their content dynamics. Naphade and
Huang [Nap02] argue that modeling of “objects” is much easier at the
“event” level. In other words‚ instead of trying to model a static object‚
which requires a robust segmentation of static object shape from the static
background‚ we can model the object as an integrated part of an event in
which it participates. For instance‚ it is much easier to model a flying
airplane than it is to model a static airplane‚ not only because of the
additional information on object (airplane) motion relative to the background
but also due to the possibility to use the information contained in the
accompanying audio track (if available).

4.2.1.1 Modeling low-level semantic concepts

We illustrate the possibility for modeling semantic concepts on the idea
of Naphade et al. [Nap98] that is based on generic probabilistic multimedia
objects – multijects‚ A multiject can be seen as a system giving as output the
probability that the semantic concept represented by the multiject is present
in a video clip‚ given the features computed in the clip and the probabilities
of the presence of other semantic concepts in that clip. The input from
multijects that correspond to other semantic concepts is weighted according
to a priori correlation between the semantic concepts. In the example in
Figure 4-5‚ the detection of the concepts of “Sky” and “Snow” reduces the
probability for the detection of the concept “Indoor” as “Sky” and “Snow”
are not likely to be found in the video clip taken on an “Indoor” location.
Similarly‚ the concept “Indoor” becomes more probable if a “Chair” or a
“Bed” were already found in the clip. Consequently‚ the weights of the
inputs coming from the multijects “Sky” and “Snow” will be strong but
negative‚ indicating that these multijects are strongly anti-correlated with the



116 CHAPTER 4

multiject “Indoor”. In contrast to this‚ strong positive weights of the inputs
from the multijects “Chair” and “Bed” enhance the support of these
multijects for a more reliable detection of the “Indoor” concept.

Naphade et al. model the multijects of the low-level semantic concepts
using Gaussian mixture models [Dud01]‚ the parameters of which are
estimated on the basis of the expectation-maximization (EM) algorithm
[Dem77] and an adequate training data set.

Figure 4-5. General structure of the “Indoor” multiject

4.2.1.2 Modeling medium-level semantic concepts

We saw earlier in this chapter that rather straightforward but effective
rule-based models can be designed for the purpose of event detection. Figure
4-6 shows the state-diagram idea of Haering et al. [Hae00] to model the
“hunt” events in a nature documentary. The state diagram is generated using
the rules derived from observation and experimentation with a number of
nature documentaries. The rules are based on the assumption that a hunt
typically consists of a series of shots featuring smooth but fast animal
motion‚ which is followed by the shots showing slower or no animal motion.
In this sense‚ the detection of the “hunt” event is based on the detection of a
less complex event that we could label as “Fast moving animal”. The shot in
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which a “Fast moving animal” is detected for the first time is marked as the
starting shot of a potential “hunt” event. With this shot the event detection
process goes from the default “Non-hunt” state to the “Beginning of Hunt”
state. In order to confirm the instance of the “Hunt” event‚ the concept of
“Fast moving animal” needs to be found in three consecutive shots. Only
then the state of “Valid hunt” is reached and the “Hunt” event is recognized
as such. The first subsequent shot in which the above moving object is not
found marks the “End of hunt” state‚ which is eventually followed by the
default state.

Figure 4-6. State diagram of the rule-based “Hunt” detector [Hae00]

The state-based event model described above can also be developed
using the theory of hidden Markov models [Dud01]. Hidden Markov models
(HMM) have proven to be among the most practical and effective
mechanisms for modeling time-varying patterns. The HMM-based models
are particularly powerful in representing the events that are characterized by
a specific temporal pattern of the appearance and behavior of features and
low-level semantic concepts across subsequent temporal video segments. A
good example of such an event is a “dialog”. Ferman and Tekalp [Fer99]
proposed a hidden Markov model of a “dialog” event as illustrated in Figure
4-7. There‚ the states “Est” and “Master” correspond to the establishing and
master shots‚ respectively. The establishing shot serves for setting up the
location for the following action. The master shot provides the view of all
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the characters in the scene. The states “1-shot” and “2-shots” refer to shots
that contain 1 or two persons‚ respectively. Although the model may be
extended by the states representing shots where more than two persons
appear (“3-shot”‚ “4-shot”‚ etc.) the shots containing one or two persons are
most common for a dialog sequence. All other cases are represented by the
miscellaneous (“misc”) state. Possible paths through the model are indicated
by the arrows‚ where each arrow is characterized by the conditional
probability of the corresponding HMM-state transition. Formally‚ we can
define the HMM model for a “dialog” event as

with being the vector of the initial state probabilities‚ and with
and being the state transition and confusion matrix‚ respectively. The
elements of the matrices in (4.4) can be estimated from the training data set
using‚ for instance‚ the Baum-Welch algorithm [Dud01]. Then‚ using the
model (4.4) the likelihood of the optimal state sequence O of the
model can be computed‚ on the basis of which the posterior probability of a
dialog‚ given the observations and priors‚ can be obtained. This posterior
probability can be seen as an evaluation of the fit between the semantic
concept “dialog” and the content of the video clip‚ and thus as the criterion
for assigning the label “dialog” to that clip.

Figure 4-7. A hidden Markov model for dialogs [Fer99]
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Clearly‚ an HMM-based event model can be represented in the same way
as the multiject in Figure 4-5‚ having as inputs the features computed in
video (serving as observations for the HMM) and outputs of other multijects
(contributing to the prior probability of the event)‚ while providing at its
output the posterior probability of the event being modeled. Therefore‚
HMM-based event models provide means for extending the multiject-based
semantics modeling approach from low-level to medium-level semantic
concepts [Nap98].

For modeling complex events‚ the reliable detection of which strongly
depends on optimally fusing the information contained in different
modalities of video‚ a number of extensions of the basic HMM principle can
be used. Examples of such extensions are event-coupled HMM and
hierarchical HMM [Nap98]. For instance‚ in the hierarchical HMM‚ first‚ a
separate component-HMM can be built and applied to each of the
modalities. Then‚ the optimal state sequences of the component-HMMs can
serve as observations for the supervisor-HMM that evaluates the correlation
of these sequences and‚ finally‚ emits the probability of event occurrence.

4.2.1.3 Modeling high-level semantic concepts

As we already discussed in Section 4.2.1.1‚ a multiject can benefit from
the outputs of other multijects to enhance the detection of the semantic
concept it represents. To maximize this benefit‚ the process of bringing the
multijects in relation to each other can be continued until a large number of
multijects are connected into a network – a multinet [Nap98] – with
multijects as nodes and with edges representing the interactions between the
corresponding semantic concepts. The interactions between the multijects
take into account the domain (prior) knowledge that specifies the likelihood
for cooccurrence of different semantic concepts‚ but also various other
contextual constraints like‚ for instance‚ the spatio-temporal ones. Examples
of the latter are the hard constraint that “Sky” is always above “Water”‚ and
the event-based constraint that for detecting the event of “Human talking”
the speech segment must be synchronous with facial expressions. Domain
knowledge is embedded in the multinet via a set of rules or through the
specification of prior probabilities. In the example of the multinet illustrated
in Figure 4-8‚ the domain knowledge regarding the concept cooccurrence is
represented by the positive and negative signs characterizing some of the
graph edges. For instance‚ while the cooccurrence of the concepts “shark”
and “bird” is highly unlikely‚ the detection of a “shark” can be enhanced by
knowing that “water” has already been detected.

Besides of providing the means to improve the detection of semantic
concepts‚ the multinet can also enable the detection of complex semantic
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concepts that are difficult to model independently. For example‚ the complex
“beach” concept can be inferred on the basis of the detection of multijects
representing simpler concepts‚ such as “water”‚ “sand” and “tree”. At the
same time‚ false detection of the “beach” concept can be prevented if the
concept “indoor” has been detected‚ as these two concepts share a negative
relation in the multinet. As the difficulty in semantics modeling increases
with each higher level of the hierarchy in Figure 4-4‚ multinets appear to be
a practical and effective tool for inferring the high-level semantic concepts.
Getting back to the examples from the introduction to the Section 4.2.1‚ a
multinet can be applied to detect an “action” movie scene on the basis of the
presence of the events such as “explosion”‚ “car chase” and “gunfire”.

Naphade and Huang propose two ways of integrating domain knowledge
regarding the dependencies between semantic concepts and the propagation
of the impact of evidence on the probabilities of outcomes throughout the
multinet‚ namely‚ by using Bayesian belief networks [Nap01‚ Dud01] and
factor graphs [Nap02‚ Fre98‚ Ksc01].

Figure 4-8. An illustration of a multinet.
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4.2.2 A different example: News indexing

The problem of video indexing cannot always be approached through
content modeling in the way described in the previous section. From the
discussion in Chapter 3 we learned that in television news programs and
similar video genres the audiovisual features extracted from a video clip are
not capable of providing a reliable base for revealing the content of that clip.
Consequently‚ detecting the concepts of “sites”‚ “objects” and “events” in a
news video is not likely to lead to a successful detection of the reports on
given topics. Clearly‚ alternative techniques to those described above are
required to reliably index a news television broadcast. We demonstrate the
possibilities for developing such techniques on the example of the Delft
AdvaNCed nEws Retrieval System (DANCERS) [Han01].

Figure 4-9. An overview of the DANCERS news-indexing scheme [Han01]
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The objective of the DANCERS is to recognize the temporal segments in
a news television broadcast that cover the topics from the list specified a
priori by the user. As indicated in Figure 4-9‚ the DANCERS operates in
three global steps:

Report segments detection
Weak classification of report segments
Merging report segments into reports

In the first step a news program is partitioned into report segments. This
is a multimodal processing step as the information from both the visual and
audio track of video is used. The report segments are defined such that their
boundaries are the potential report boundaries. Consequently‚ the reports
will be found by merging the related neighboring report segments. One set
of boundaries of report segments is found at places of silences in the audio
track. This is based on the assumption that the anchorperson is likely to
briefly pause in reading after completing one story and before introducing
the following one. Another set of report segment boundaries is obtained by
collecting the beginning and ending time stamps of anchorperson shots.
Considering this set of time stamps is justified by the assumed relation
between the editing structure of the news program (anchorperson shots
interspersed with report shots) and the pattern of topic changes along the
program. A variety of algorithms for anchorperson shot detection in video
can be used for this purpose (e.g. [Ari96‚ Fur95‚ Han98]).

Figure 4-10. Assignment of the most probable topics per report segment
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Once the report segments are found‚ each of them is assigned a list of
topics that are most probably covered by that segment. For assigning a topic
to a report segment reliable topic-specific keys are needed. We learned
before that keywords extracted from the text of transcribed speech of the
news broadcast are best capable of revealing the semantic content structure
of the broadcast. For the purpose of keyword matching a database of topics
is created prior to the news analysis process. For each topic being of interest
to the user a vast number of keywords are collected. These keyword sets are
typically generated by automatically inserting large text volumes related to
the topics of interest‚ for instance‚ from the related Internet news sites. Each
keyword in the database is also assigned a weighting factor (or weight) to
quantify the importance of that keyword for a certain topic. We refer to the
discussion in Section 3.4.2 regarding the computation of suitable weights for
the keywords in text-based content analysis systems.

The scheme of the DANCERS module for topic-assignment per report
segment is illustrated in Figure 4-10. The assignment starts with filtering the
text of report segments and extracting only the words that are present in the
topic database. Assuming that n different keywords from the database field
related to the topic are found in the report segment r‚ then the following
set of rules is applied to determine the relevance and the likelihood of
topic in segment r:

Topic is relevant for segment r if Here c is the critical
number of different keywords from the keyword list of the topic
in the database‚ which need to be found in a segment in order to
make the topic relevant for that segment.

If is not relevant for the segment r‚ then the likelihood is set
equal to 0.

If is relevant for the segment r‚ then the likelihood is
computed as

The formula (4.5) says that the likelihood that a report segment r covers
the topic T depends on how unique and relevant the keywords found in that
segment are for the topic T. The more unique and relevant the keywords‚ the
higher the likelihood. The importance of the weighting factors
becomes obvious if we realize that only l keywords found for the topic T are



124 CHAPTER 4

taken into account‚ that is‚ those having the highest weights. While the value
of the parameter l cannot be smaller than c‚ we set an upper limit v to this
value in order to prevent taking into account less relevant keywords that may
confuse the subsequent segment merging process. The value for l is now
determined using the following rule:

We compute the likelihood (4.5) for all relevant topics found in the
segment r‚ and obtain a list of likelihood values‚ which can be sorted in
descending order. This is also illustrated in Figure 4-10. The ordered
likelihood value list can be defined as

with p being the number of relevant topics obtained for the segment r. In the
next step we introduce thresholding of the ordered likelihood list (4.7) in
order to separate the most probable from least probable topics per segment.
The threshold value for segment r is determined as the likelihood value at
which the largest “jump” in the ordered list (4.7) takes place‚ that is‚

Applying the threshold (4.8) splits the ordered list (4.7) into the list of the
most probable and least probable topics. Only the most probable topics and
their likelihood values are considered in the subsequent step of report
generation. We denote the set of most probable topics for segment r by

The input into the report-generating procedure consists of the report
segments and their most probable topics defined in (4.9). In the first
step we merge all consecutive segments that contain the topic within the
list of their most probable topics. Performing this operation along the entire
program results in a set of blocks at the lowest level of the segment-merging
pyramid for the topic as shown in Figure 4-11. Blocks at higher pyramid
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levels are obtained by merging all report segments that belong to the blocks
at lower levels and those between them. In this way‚ blocks may appear that
contain segments with no topic in their lists of most probable topics. This
is‚ for instance‚ the case with block 3 (segment 2)‚ block 4 (segment 4) and
block 5 (segments 2 and 4) in Figure 4-11.

Figure 4-11. Illustration of the segment-merging pyramid for topic     and a news sequence
consisting of six report segments. Segments characterized by grey blocks contain topic in
their lists of most probable topics

The report on topic needs to be found among all blocks (pyramid
nodes) created for that topic. In the example shown in Figure 4-11‚ l has the
values in the range of 0 to 5. Not all blocks are‚ however‚ suitable to be
considered as reports on topic The block that belongs to the pyramid of
the topic is “valid”‚ that is‚ it can be considered as a potential report on
topic if it does not contain or is not contained by a block that belongs to
the pyramid of another topic and has a larger likelihood than the block
This likelihood is computed as
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The function N(.) in (4.10) stands for the total number of words per segment
(nominator) or per block (denominator). Then, the actual report on topic is
selected among all valid blocks for that topic as the block that

is as large as possible,
has the largest possible likelihood (4.10) (this requirement is
considered only if two equally long valid blocks exist)

Performing the above procedure for the pyramids of all topics leads to the
boundaries of news reports being of interest to the user.

We discuss the performance of the DANCERS on the example of a
typical Dutch news broadcast lasting for 25 minutes and consisting of 11
reports on different topics. Report segments were generated using the time
stamps of the anchorperson shots and of all silent segments lasting for more
than 2 seconds. In this way 37 report segments were detected, numerated
from 0 to 36. Then, for each segment the list (4.9) of most probable topics is
created. For topic assignment per segment we created a database that
covered 68 topics with in total 206 articles collected at various Internet news
sites. The collection of articles contained about 7400 words. Topic
assignment per segment was done using the values of the parameters c and v
as 5 and 8, respectively. In total, 17 most probable topics were collected over
all report segments. Finally, the pyramid (Figure 4-11) was created for each
most probable topic. The total number of nodes in all pyramids was 45 and
corresponds to the number of candidate news reports in our test sequence.

In Figure 4-12 we illustrate the composition of the pyramids on the
example considering four topics. For these topics the pyramid nodes, their
composition in terms of report segments, their likelihood and status (valid or
not valid) are indicated. For instance, the pyramid for the topic “Euro” has
15 nodes, 10 of which are valid. Figure 4-12 also shows the results of the
indexing process: the pyramid nodes indicated in bold are found as reports
on the corresponding topics. A closer look at this process reveals that for the
topic “Explosion” three blocks were found at the lowest pyramid level. After
combining these initial blocks a total of 6 blocks were obtained. The blocks
at higher pyramid levels have, however, low likelihood and are, therefore,
overruled by the blocks of other pyramids having higher likelihood and
containing the same report segments. For instance, Block 5 of the topic
“Explosion” contains 32 report segments, has the likelihood of about 0.08
and is overruled by several blocks from other pyramids, like for instance, by
the block 4 of the topic “Olympic games”.

Of all nodes in Figure 4-12 only 3 nodes were selected as reports. It is
important to note that, even if a pyramid consists of one block only (no other
choice for that topic available), that block is not necessarily found as the
report on that topic. A good example is the topic “Vietnam” in Figure 4-12.

CHAPTER 4
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The block representing the pyramid of this topic and consisting of one report
segment has a relatively low likelihood, which makes it easily overruled by
the blocks of other pyramids containing the same report segment but higher
likelihood values.

Figure 4-12. Examples of topic pyramids for some of the most probable topics detected in a
test sequence. Bold blocks are selected as reports.
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Figure 4-13. Actual temporal report structure of the test sequence and the indexing result:
Properly detected reports and their topics (in boxes) and one false topic assignment.

Figure 4-13 shows the results of the segment merging process for the
entire test sequence, compared to the real report structure of this sequence.
The real structure of the sequence is shown on the left hand side while the
reports found using DANCERS are listed on the right. In total, 10 reports
were found, one of which (“East Timor”) was false. Several important
conclusions illustrating the performance of DANCERS can be drawn from
the results presented in 4-13:

If the topic database contains the topics that are present in the news
program being analyzed, and if these topics are properly trained (e.g.
using a sufficient number of news articles), then DANCERS is able
to find the boundaries of reports corresponding to these topics. This
can be seen on the example of topics “Euro”, “Explosion”,
“Journalism”, “Traffic”, “Flood”, “Iraq”, “Yugoslavia”, “Olympic
Games” and “Weather”.
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If the topic database contains a topic that is present in the news
program being analyzed, but if not enough material was used to train
the database for this topic, then DANCERS may fail in recognizing
the corresponding reports. This was the case with the report on
“Justice” in segment 22, for which we only used one short article to
train the database.

In order to be classified properly, a report segment has to be
sufficiently long. If not, the classification result is unpredictable. A
good example is the segment 36 consisting of several words only and
therefore being falsely classified as a report on “East Timor”.

If a segment is too long, the probability increases that more than one
topic is covered by that segment. Since only one topic per segment
can be selected in the last instance, the indexing process may be
disturbed in this case. For instance, the segment 21 covered both the
topic “Health care” and the topic “Traffic”, while only the last one
was detected.

As can be seen in Figure 4-13, the segment-merging procedure provides
an extraction of “relevant” news segments, that is, those complying with pre-
specified topics, and neglects the other (irrelevant) parts of the program.

4.2.3 Multi-segment video indexing

The ideas described in previous sections can be applied to index a
temporal video segment independent of the neighboring segments. Many
parsable video genres are characterized, however, by the sequences of
mutually related semantic segments. For instance, a typical TV news
broadcast has a rather predictable structure. It may start by the reports on
domestic politics, then continue with foreign politics, and finish - via the
sport section - by the weather report. Clearly, the information on the content
of one video segment provides in this case an additional clue that can be
used to index the subsequent segments. For instance, in the news program
structure mentioned above, it is highly unlikely that the segment following a
report on domestic politics will be a weather report.

The relation between the contents of subsequent video segments can be
exploited to enhance the indexing of each individual segment. As we again
face the problem of classifying time-varying patterns, the same tools can be
applied here as those already introduced in Section 4.2.1.2 for detecting
“events” in video. Figure 4-14 illustrates the usage of a hidden Markov
model for indexing an example sequence of six semantic segments.
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Assuming that each segment can belong to N different semantic content
categories (e.g. “topics”), these categories then determine N states of the
model. In addition, the state N+1 is included to account for miscellaneous,
otherwise unresolved entries. The model can be trained using the videos that
have the “target” temporal content structure. The observation sequence of
the model can consist of the feature patterns directly or can contain the
results of content modeling per semantic segment. By evaluating the model
on the given test sequence of semantic segments the most probable state
sequence of the HMM is mapped to the segment sequence. This results in
simultaneous indexing of all segments according to the optimal HMM state
sequence.

Figure 4-14. Multi-segment video indexing using hidden Markov models

4.3 VIDEO CONTENT REPRESENTATION FOR
BROWSING AND CONTENT PREVIEW

As we discussed in the introduction to this chapter, efficient interaction
with a large video collection at different content resolutions can be enabled
by combining index terms with abstracts of video clips into hybrid video
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browsing trees. A video abstract can be defined as a compact selection of the
audiovisual material of a clip, representing the essence of the content of the
clip. Since the richest information component of a video abstract is the
visual one, video abstraction is sometimes also referred to as video
visualization. Yeung and Yeo [Yeu97a] define video visualization as “the
joint process of analyzing video and the subsequent derivation of
representative visual presentation of the essence of the content”.

We distinguish between two general types of video abstracts, namely the
static and dynamic one. Dynamic abstracts consist of selected temporal parts
of the original video clip. To generate such an abstract, prespecified classes
of events can be extracted first from a video using the techniques discussed
in Section 4.2, and then the event clips can be merged together in the
resulting abstract video clip [Pfe96b, Bab02]. Clearly, the preselection of
event classes to be included in a dynamic video abstract is highly genre
dependent. The user study performed by Agnihotri et al. [Agn03] shows that,
for instance, the abstracts of talk shows should show all guests and reveal all
discussion topics, while the abstract of a news story should contain the
people involved in the story, as well as the time and the location of the event
covered by the story. The same study showed that movie abstracts should
include the information on the characters and plot points but should not
reveal the plot completely, as this would reduce the enjoyment of watching.

A dynamic video abstract can also be generated using the criteria that are
not necessarily based on content modeling. A good example is the approach
of Sundaram et al. [Sun02] who first define the measure of visual
complexity of the analyzed video clip, and then compute and map this
complexity onto the minimum length m of a frame sequence that is
necessary to comprehend the content of the clip. Finally, a video abstract of
the length m is generated using the procedure that maximizes the
information content and the coherence of the abstract, given the constraints
of multimedia synchronization, as well as the visual and audio syntax.

Another way of generating dynamic video abstracts is to use
psychological criteria, such as visual attention [Ma02a]. To this class of
approaches also belong those that are based on affective video content
analysis. These approaches are treated in more detail in Chapter 5.

Still video abstracts consist of still images extracted from video or
constructed from the selected frames of video. Due to their compactness,
still video abstracts are particularly suitable for enabling quick browsing
through the hierarchy of video content, and therefore for building hybrid
hierarchical browsing trees, like the one sketched in Figure 4-3. However,
dynamic video abstracts can be used in such a tree as well, for instance, to
support a still image representing an event by a playable abstract of that
event consisting of both the visual and the accompanying audio track.
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The problem of creating still video abstracts was already addressed in
Chapter 3 where we aimed at representing video clips in a compact fashion
for efficiently computing their content similarity. There we mentioned the
abstracts consisting of keyframes and mosaics. Keyframes and mosaics can
also be applied in the context of content visualization for browsing.
However, while mosaics can be generated here in the same way as described
in Chapter 3, and employed directly for video browsing purposes, different
criteria need to be used to extract keyframes and to organize them into an
intuitive guide through the video content.

Figure 4-15. Keyframes organized using hierarchical clustering. Each level of hierarchy
provides entry to the content at the corresponding resolution.

While keyframes extracted for video visualization purposes still need to
capture all relevant aspects of the visual content of a video segment, and to
minimize the redundancy in the visual content they capture [Han00], they
also need to be meaningful to the user and provide sufficient information
about the content of the segment they represent. In this sense, keyframes
should be selected based on the criteria already discussed in Section 3.4.1.1,
but also based on the importance of the persons and objects captured therein
with respect to the overall content of the video segment. These extra criteria
for keyframe selection would typically require additional processing steps,
such as object or face detection and recognition. Further, of all the frames
capturing the same content aspect, the most representative ones should be
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extracted, like those taken under the best camera angle, or those collecting
the maximum of important content elements (objects, faces, parts of the
scenery). Finally, the keyframes extracted for the purpose of browsing and
content preview should be technically acceptable as well: no blurred or dark
frames should be extracted, neither the frames containing coding artifacts or
interlacing effects.

Figure 4-16. An illustration of the process of generating a video poster

Clearly, the task of automating the keyframe extraction process for video
visualization purposes is not trivial and certainly marks one of the challenges
to be met by future research in the area of video content analysis. This,
however, should not prevent us to already think about suitable ways of
organizing keyframes into the structures by which the user could be guided
through the content of a large video collection in an efficient and effective
manner. The simplest way of generating such structure is to apply a
hierarchical clustering algorithm [Jai88] to the extracted keyframes. The
result of such clustering is a tree, as illustrated by the example in Figure 4-
15, that provides insight into the content of a video clip with increasing
resolution at each deeper tree level [Oh00]. Naturally, in order for the tree to
optimally lead the user through video content, the clustering criteria based
on content semantics need to be applied. For defining these criteria, similar
reasoning should be used as discussed above in the context of keyframe
extraction.
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Figure 4-17. The underlying layout-principle for generating video posters

Figure 4-18. Examples of video poster layouts for different number of frame clusters

The concept of video posters proposed by Yeung and Yeo [Yeu97a-b],
combines keyframes taken from different parts of the clip in the way to
reflect the relative importance of the content of these clip parts in the overall
content flow of the clip. The process of generating a video poster is
illustrated in Figure 4-16. The process starts by grouping the frames of the
clip into N clusters, each of which is then represented by one keyframe.
Typically, the frame closest to the cluster centroid can be used for this
purpose. The keyframe of each cluster is assigned a dominance value
defining the relative importance of the content captured by the frames in the
cluster compared to the contents of other clusters. The simplest way of
measuring this importance is to look at the relative number of occurrences of
the visual material of a cluster in the entire video clip. However, more
elaborate content analysis techniques, for instance, those based on object and
face recognition, could be developed and used for this purpose as well. In
the last step, the keyframes are resized corresponding to their dominance
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values and fitted within a selected layout pattern. Yeung and Yeo draw the
rules for designing the poster-layout patterns from the practice of graphic
design and newspaper editing and choose the design principle as illustrated
in Figure 4-17. There, the numbers in the fields serve to indicate the
importance of the field: the higher the number the lower the importance.
Figure 4-18 shows the examples of the layout patterns generated using the
abovementioned principle for different numbers of frame clusters.

4.4 REMARKS AND RECOMMENDATIONS

Although the research efforts aiming at the development of reliable video
content modeling and abstraction mechanisms have been rather intensive in
the past years, it would have been insufficient to provide in this chapter just
an inventory of the existing approaches. This is mainly because the methods
proposed so far are largely fragmented and aim at the indexing and
abstraction solutions that are only usable either in controlled situations or in
narrow application scopes. Instead, our objective in this chapter was to
discuss the fundamental issues that should be addressed when developing
reliable solutions to the video indexing and abstraction problems in a general
case. In the specific context of video indexing, these issues include the
following:

Distinction between single- and multi-segment indexing,

Suitability of particular features and content modeling approaches
for the given indexing task,

Selection of an effective way of integrating the available feature
information, the dependences between the content elements found in
video and other domain (prior) knowledge to maximize the quality
of inference of the targeted semantic concepts.

The first item considers an important property of many video genres, that
is, the relation between the consecutive temporal video segments. If present,
this relation can be used as a valuable additional clue when indexing these
segments. As we showed in Section 4.2.3, hidden Markov models can be
used to generate a suitable indexing framework in this case.

The second item addresses the problem that is inherent in all video
content analysis steps. However, this problem is particularly challenging in
the context of video indexing due to a large variety of semantic concepts that
may need to be modeled. Clearly, a useful step in simplifying this problem is
to cluster semantic concepts into larger groups, like for instance, the three
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levels of hierarchy in Figure 4-4, and to find ways to approach the modeling
of semantic concepts in each of the groups in a unified way. When doing
this, we can try to compensate for the incomplete or missing feature
information by investigating the dependences between semantic concepts, as
indicated in the third item in the list above. Although we illustrated the
possibilities for modeling such dependences on the example of a unified
probabilistic approach based on multijects and multinets, other tools of the
pattern classification and knowledge inference theory can be applied for this
purpose as well.

Regarding the problem of video abstraction, the biggest challenge is
undoubtedly the extension of the current possibilities for generating dynamic
and static video abstracts to the level where “meaningful” abstracts can be
obtained, that is, the abstracts that are capable of “revealing the essence of
the story” toward the user. Recent research results on generating dynamic
video abstracts (e.g. visual skims) show a clear tendency in this direction. In
contrast to this, the efforts on creating static video abstracts, especially
keyframes, have been strongly biased by the ideas from the past, where the
keyframe-extraction criteria were rather meaningless and formulated solely
on the basis of low-level features, like, for instance, selecting keyframes at
the points of minimum motion (object and camera activity) or by minimizing
the redundancy in the visual content. While these “classical” approaches to
keyframe extraction are still relevant to the processes of clip-to-clip
comparison (see Chapter 3), the problem of keyframe extraction needs to be
revisited when aiming at the browsing and retrieval applications.

The details of the example methods that we referred to in this chapter,
but also of many inspiring ideas and methods dealing with various specific
problems of video indexing and abstraction can be found in the literature
below that we suggest for further reading.
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Chapter 5

AFFECTIVE VIDEO CONTENT
ANALYSIS

5.1 INTRODUCTION

In this chapter we address the problem of extracting the affective content
from video. The affective content of a given video clip can be seen as the
amount and type of affect (feeling, emotion, mood) that characterizes that
clip. As opposed to the cognitive content that we considered in this book so
far and that is built of the facts about the temporal video content structure
(content coherence), the objects captured by the camera, and the scene
composition and type (like dialogs, actions, news or documentary topics),
the affective content reaches beyond these facts. Assuming that a cognitive
content analysis algorithm has been used to identify, for instance, all video
clips showing dialogs, the affective analysis steps are required to re-filter the
obtained clip set in order to identify those dialogs that are tense, relaxed, sad,
or joyful. In this sense, affective video content analysis can be seen as an
extension of the theory discussed in the previous chapter, by which the scope
of content labels is broadened to capture not only cognitive but also affective
semantic concepts.

Identifying the affective content of a given video clip is important for
various video indexing and retrieval applications. To illustrate this we quote
the statistical fact reported by Picard [Pic97a] that finding photographs
having a particular mood was the most frequent request of advertising
customers in a study of image retrieval made with Kodak Picture Exchange
[Rom95]. One could easily extend this result to video collections as well: an
average user will often search for the funniest or most thrilling fragments of
a movie, as well as the most exciting segments of a sport event. On the other
hand, the user may also wish to remove “unpleasant” video segments from
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his video collection. Finally, as the user preferences are based to a great
extent on the prevailing mood of a video, the affective video content analysis
is therefore likely to provide valuable information that can be used in the
process of personalizing the video delivery to the user.

The amount and type of affect characterizing a video clip are referred to
in this chapter as those that are expected to arise in the user while watching
the clip. This expected feeling or emotion can be seen as the one that is
either intended to be communicated toward the audience (from video
program directors), or that is likely to be elicited from the majority of the
audience who are watching the particular video clip. To illustrate the former
we use the quote of Ian Maitland [Pic97a] - the Emmy-Award-winning
director and editor: “It is the filmmaker’s job to create moods in such a
realistic manner that the audience will experience those same emotions
enacted on the screen, and thus feel part of the experience.” The expected
affective response of a broad audience can best be illustrated by the example
of a sport broadcast: A score (goal) in a soccer match can generally be
considered a highly exciting event, just like the finish of a swimming
competition or the sprint over the last 50 meters in a running contest.

At this stage it is worthwhile emphasizing that the affective content of a
video does not necessarily correspond to the affective response of a
particular user to this content. In other words, the expected feeling or
emotion as described above should not be mixed up with the actual feeling
or emotion that is evoked in a user while watching video. The expected
affective response can be considered objective, as it results from the actions
of the movie director, or reflects the more-or-less unanimous response of a
general audience to a given stimulus. Opposed to this, the perceived feeling
or emotion is highly subjective and context-dependent. Therefore, it may be
very different from the expected one and may also vary from one individual
to another. For instance, the same soccer television broadcast may make the
winning team’s fans happy, the losing fans sad, and elicit no emotions at all
from an audience that is not interested in soccer. On the other hand, the
relation between the expected and the subjective affective responses (e.g.
marking a horror movie with the label “funny” for those people who always
laugh while watching such movies) and the information about the context
(e.g. winning or losing soccer fan) can be taken into account, for instance, by
generating the profile of a particular user. This profile can be seen as a
function mapping the expected affective response to a given stimulus onto
the user-specific affective response to that stimulus. Once this function is
known for a particular user, individual deviations between the elicited and
expected mood can always be taken into account later on and used to
“personalize” the expected mood accordingly.
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5.2 DIMENSIONAL APPROACH TO AFFECT

A human affective response or state can be represented using the
following three basic dimensions [Sch54, Osg57, Rus77, Bra94, Lan95a]:

Valence (V)
Arousal (A)
Control (Dominance) (C)

Valence is typically characterized as a continuous range of affective
responses or states extending from pleasant or “positive” to unpleasant or
“negative” [Det97], while arousal is characterized by affective states ranging
on a continuous scale from energized, excited and alert to calm, drowsy or
peaceful. We can also say that arousal stands for the “intensity” of emotion,
while valence can be related to the “type” of emotion. The third dimension –
control (dominance) – is particularly useful in distinguishing among
affective states having similar arousal and valence (e.g. differentiating
between “grief” and “rage”), and typically ranges from “no control” to “full
control”. Consequently, the entire scope of human affective states can be
represented as a set of points in the three-dimensional VAC coordinate
system.

While we could tend to assume that the points corresponding to different
affective states are equally likely to be found anywhere in the three-
dimensional VAC coordinate system, psychophysiological experiments
show that only certain areas of this system are relevant. These experiments
typically include measurements of affective responses of a large group of
subjects to calibrated audio-visual stimuli collected in the International
Affective Picture System (IAPS, [Lan85]) and the International Affective
Digitized Sounds system (IADS, [Bra91]). Subjects’ affective responses to
these stimuli can be quantified either by evaluating their self-reports, e.g. by
using the Self-Assessment Manikin [Lan80], or by measuring physiological
functions that are considered related to particular affect dimensions. For
example, heart rate reliably indexes valence, where skin conductance is
associated with arousal. It was found namely that the heart rate accelerates
as a reaction to pleasant stimuli, while unpleasant stimuli cause the heart rate
to slow down [Fit92, Gre89, Det97]. Also, an increase in arousal causes the
sweat glands to become active and the skin conductance responses become
larger and more frequent [Hop94, Det97]. While IAPS and IADS are
specially created to evoke a wide range of different emotions with their
audio-visual content, the three-dimensional surface circumventing the
mappings of affective responses onto the 3D VAC coordinate system is
roughly parabolic. An idea about the form of this surface can be obtained
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from the illustration in Figure 5-1. The parabolic shape becomes logical if
we realize that there are relatively few or even no stimuli that would cause
an emotional state characterized by, for instance, high arousal and neutral
valence, or high valence accompanied by low arousal [Die99].

Figure 5-1. A view of the 3D affect space (adopted from Dietz and Lang [Die99])

The dimensional approach to representing affect, as described above, can
play an important role in the development of agents that serve as mediators
between the computer and the user, and involve the user in an interaction
with the computer that closely resembles the interaction between humans
[Nas94]. Since human-to-human interaction is strongly determined by
emotions, the best agents are the “affective” ones, that is, those that are able
to sense, synthesize and express emotions. For instance, Dietz and Lang
[Die99] use the parabolic shape introduced above as the basis for assigning a
temperament, mood and emotion to an affective agent and so for defining
the “personality” of that agent. The temperament is a fixed point in the space
that defines the “at rest” state of the agent (its rudimentary personality).
While the temperament is static, the points corresponding to the mood and
emotion of the agent can move freely within the space. The position of the
emotion point gives rise to the expressions of the agent and determines its
current affective state. Further, the emotion point gravitates toward the
position of the mood that, again, moves through the space relatively slowly,
is mainly pulled by emotional events and gravitates towards the position of
the temperament. The dynamics of the system is therefore influenced by
both the agent’s current affective state and its temperament.
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Figure 5-2. Illustration of the 2D affect space (adopted from Diets and Lang [Die99])

5.3 AFFECTIVE VIDEO CONTENT
REPRESENTATION

5.3.1 2D affect space

As can be seen from Figure 5-1, the effect of the control dimension
becomes visible only at points with distinctly high absolute valence values.
This effect is also quite small, mainly due to a rather narrow range of values
belonging to this dimension. Consequently, it can be said that the control
dimension plays only a limited role in characterizing various emotional
states. As a matter of fact, Greenwald et al. [Gre89] have shown that valence
and arousal account for most of the independent variance in emotional
responses. This is especially true for the problem addressed in this chapter -
the extraction of the affective content from video. Numerous studies of
human emotional responses to media have shown that “emotion elicited by
pictures, television, radio, computers and sounds can be mapped onto an
emotion space created by the arousal and valence axes” [Die99]. For this
reason, we neglect the control dimension and consider the arousal and
valence dimensions only. Instead of the three-dimensional surface
introduced in the previous section, the relevant affect space for the purpose
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of affective video content analysis is reduced to the projection of this surface
onto the arousal-valence plane. Figure 5-2 shows an illustration of the
resulting 2D affect space. The parabolic contour is generated to circumvent
the scatter plot of affective responses with respect to arousal and valence
only, which were collected using the IAPS and IADS stimuli. It is expected
that the affective states extracted from a video can be represented as the
points within this contour.

Figure 5-3. An illustration of arousal, valence and affect curve
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5.3.2 Arousal, valence and affect curve

By computing the arousal and valence values along a video, a set of
curves can be obtained that can provide a representation of the affective
content of a video in view of the applications mentioned in the introduction
to this chapter [Han01].

The arousal time curve indicates how the intensity of affective state
changes along a video, and depicts the expected changes in user’s
excitement while watching that video. In this sense, the arousal curve is
particularly suitable for locating the “exciting” video segments, and we will
also refer to it later on as excitement time curve. On the basis of the arousal
time curve we can generate a video abstract containing the highlights in a
desired length. Namely, given the maximum abstract length N in frames, a
horizontal line can be drawn cutting off the peaks of the curve in such a way
that the number of frames covered by the peaks is not larger than N (Figure
5-3a).

The valence time curve depicts the state changes in the type of affective
states contained in a video over the time. As such, this curve mimics the
expected changes of “moods” of the user while watching a video. Using the
valence time curve we can also determine the “positive” and “negative”
video segments with respect to the expected type of feeling that is evoked in
the user during these segments. This information can serve to match the
video to personal preferences of the user, but also to automatically perform
“censorship” tasks, that is, to remove all segments from a video that are “too
negative” for certain groups of the audience. As illustrated in Figure 5-3b,
such segments may be searched among those for which the valence curve
reaches sufficiently low values.

The arousal and valence time curves can be combined into the affect
curve. This curve is composed of the value pairs of the arousal and valence
time curves that are taken per time stamp of the video and mapped onto the
corresponding points of the 2D affect space (Figure 5-3c). The affect curve
can be seen as the most complete representation of the affective content of a
video, which can be obtained automatically. This curve can be interpreted in
various ways and used for numerous applications related to video content
representation and retrieval at the affective level. For instance, assuming that
the affect curve has already been computed for a given video, an arbitrary
temporal segment of that video can automatically be indexed with respect to
the affective states through which the corresponding part of the affect curve
passes. Indexes can be provided in the form of labels that are assigned a
priori to different regions of the 2D affect space, as illustrated in Figure 5-4.
Also, the area of the 2D affect space in which the curve traverses most of the
time corresponds to the dominant affective state (“prevailing mood”) of a
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video. This can be highly useful for automatically classifying a video into
different affective genres. Further, the affect curve may directly serve as a
criterion for filtering the incoming videos according to a user’s preference.
This preference can, namely, be represented by the user profile consisting of
affect curves of all programs that the user has selected in the past (in the
learning phase of the system). Filtering an incoming video according to this
preference is then nothing more than matching the properties of the affect
curve of the incoming video with the properties of the affect curves included
in the profile. We will address the possibility for generating and using a
profile based on affect curves in more detail in Section 5.5.3.1.

Figure 5-4. The content of a video segment can be indexed automatically by the label that
characterizes the area of the 2D affect space through which the part of the affect curve
corresponding to that segment passes.

5.4 AFFECTIVE VIDEO CONTENT MODELING

In order to obtain the affective content representation as described in the
previous section, models need to be developed for the arousal and valence
time curve. These models fulfill the task of deriving arousal and valence
values from the low-level features computed in a video.
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5.4.1 Criteria for model development

As arousal and valence are psychological categories, their models need to
be psychologically justifiable. To achieve this, we can introduce the
following three criteria that a model for the arousal, valence or affect curve
should satisfy [Han04]:

Comparability
Compatibility
Smoothness

The first criterion (Comparability) ensures that the values of the arousal,
valence and the resulting affect curve obtained in different videos for similar
types of events are comparable. This criterion obviously imposes
normalization and scaling requirements when computing the time curves.
The second criterion (Compatibility) ensures that the affect curve traverses
an area in the valence-arousal coordinate system, the shape of which roughly
corresponds to the parabolic-like contour of the 2D affect space. The third
criterion (Smoothness) accounts for the degree of memory retention of
preceding frames and shots [Ada00]. It ensures that the perception of the
content, and consequently the mediated affective state, does not change
abruptly from one video frame to another but is a function of a number of
consecutive frames (shots).

5.4.2 How to select features?

Little is known regarding the relations between the low-level features and
affect. While the problem of bridging the semantic gap remains very hard in
the case of cognitive video content analysis, the magnitude of this problem
in the affective case is even larger. The reason for this is that in the cognitive
case the low-level features describe aspects of a real entity, like, for instance,
the choice of the color red as one of the features to characterize a red car. In
the affective case, however, we need to relate the low-level features to
something rather abstract, such as feeling or emotion: which color
combination, sound or event is to be related to happiness, disgust or fear?

5.4.2.1 Visual features

Colombo et al. [Col99] elaborate on the effects of color combinations in
art images on the human affective state. Red color is found to communicate
happiness, dynamism and power. Orange is thought to resemble glory, green
should elicit calmness and relaxation, while blue may suggest gentleness,
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fairness, faithfulness and virtue. Purple, on the other hand, sometimes
communicates fear, while brown is often used as the background color for
generating relaxing scenes. Further, a sense of uneasiness can be evoked by
the absence of contrasting hues and the presence of a single dominant color
region. This effect may also be amplified by the presence of dark yellow and
purple colors. As opposed to this, the sense of calmness and quietness can be
conveyed by combining complementary colors.

As reported in [Col99], the effect of color has been used in advertising
practice to induce product-related mood effects in the potential customers
[Haa88]. Very often, color is also combined with the elements of scene
structure to enhance the effectiveness of advertising. This structure is mainly
determined by the main edges found in a video frame, which are defined by
the camera angle and the properties of the objects in the scene. For instance,
the dominance of oblique lines in the scene communicates dynamism and
action, while flat lines (e.g. the horizon) induce a sense of calmness and
relaxation. Also, saturated colors can be used in combination with specific
camera angles to communicate a sensation of dynamism.

One of the most extensively investigated visual features in the context of
affective video content analysis is motion. Research results show that motion
in a television picture has a significant impact on individual affective
responses. This has been realized also by film theorists who contend that
motion is highly expressive and is able “to evoke strong emotional responses
in viewers” [Arn83, Gia76]. In particular, Detenber et al. [Det97] and
Simmons et al. [Sim99] investigated the influence of camera and object
motion on emotional responses of humans and concluded that an increase of
motion intensity on the screen causes an increase in arousal, and thus also in
the magnitude of valence. The sign of valence is, however, independent of
motion: if the mood of a test person was “positive” or “negative” while
watching a still picture, the type of the mood will not change if a motion is
introduced within that picture.

5.4.2.2 Vocal features

In an analysis of the studies performed by Davitz [Dav64], Pittam,
Gallois and Callanite [Pit90], and Chung [Chu95], Rosalind Picard [Pic97a]
discusses a variety of vocal features that have been proposed so far in the
attempts to enable computers to recognize affect from speech. The changes
in arousal seem to be correlated, for instance, with pitch range, loudness,
spectral energy in higher frequencies (up to 4kHz), and speech rate (e.g.
faster for fear or joy and slower for disgust or romance). The sign of valence,
however, is believed to be communicated by more subtle and more complex
speech properties, such as inflection, rhythm, duration of the last syllable of
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a sentence (short in anger and long in joy and tenderness), and voice quality
(more resonant for joy and tenderness, and breathy for anger and sorrow).
Further, the studies of Williams and Stevens [Wil69, Wil72] were
mentioned, where the features, such as fundamental frequency contour,
average speech spectrum and precision of articulation, were used to
discriminate the affective states of fear, anger and sorrow. Finally, linear
predictive coding parameters of speech were used together with speech
power and pitch to recognize eight affective states (fear, anger, sadness, joy,
disgust, surprise, teasing, neutral) in persons interacting with an animated
character [Tos96].

An idea about the possibilities to relate the properties of speech to human
affective states can also be obtained from the study of Murray and Arnott
[Mur93] on human vocal emotion. They analyzed a wide range of comments
made in literature about vocal effects caused by particular emotions. A high
consistency of these comments provided the base for summarizing the vocal
effects as shown in Table 5-1 for five primary emotions: anger, happiness,
sadness, fear and disgust. For further information the reader may want to
refer to the study article [Mur93].
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In spite of the numerous studies on the relations between vocal effects
and affect, inferring the affect from speech in practice is still an unresolved
problem. The difficulty of this problem can best be seen in the fact that,
when tested on neutral speech or on speech with obscured meaning, affect is
properly recognized by humans only in 60% of all cases [Sch81]. Clearly,
the question may arise whether we ask the computer to perform an
impossible task. The results of affect recognition by humans show, however,
that a person can usually distinguish arousal in the voice (e.g. angry versus
sad), while the main obstacle is to properly identify the type (valence) of the
affective state of the speaker. One may, therefore, conclude that the
ambiguity in speech properties regarding the arousal recognition is relatively
low, and that this detection task could be automated with reasonable success.
In order to be able to do the same for valence, however, we need to also
consider the context (scene, event), the content of the speech, and the
features of other modalities (e.g. visual).

5.4.2.3 Editing-related features

By adjusting the length of the shots in relation to one another, a
filmmaker is able to control the rhythmic potential of editing [Bor01]. The
patterning of shot lengths [Ada00] is therefore a popular tool for the director
to create the desired pace of action (e.g. in a movie). The director typically
chooses for shorter shot lengths in movie segments that are to be perceived
by the viewers as those with a high tempo of action development, or to
create stressed, accented moments. As opposed to this, longer shots are
typically used to de-accentuate an action. We illustrate this on the example
from [Bor01]: “In editing Raiders of the Lost Ark, Steven Spielberg
discovered that after Indiana Jones shoots the gigantic swordsman, several
seconds had to be added to allow the audience’s reaction to die down before
the action could resume”. In this sense, the varying shot lengths can be
linked to the intended changes in the magnitude of arousal that is evoked in
the audience along a movie. Note that regarding the pace at which the video
content is offered to a viewer, an increase in shot-change rate is likely to
have a similar impact on a viewer’s arousal as an increase in the overall
motion activity.

Wide variations in shots lengths can also be a good indication of how the
director of a live broadcast responds to interesting events. We can explain
this on the example of a soccer match that is broadcasted most of the time
using one camera that covers the entire field. The director switches from one
to another camera (e.g. by zooming onto a particular event, the bench or the
spectators) only occasionally, which results in rather long shots. However,
whenever there is a goal, or an important break (e.g. due to foul play, free



AFFECTIVE VIDEO CONTENT ANALYSIS 155

kick, etc.), the director immediately increases the rate of shot changes trying
to show everything that is happening on the field and among the spectators
at that moment. In this way, any increase in shot-change rate during a live
broadcast is likely to be related to the director’s response to an increase in
the general arousal evoked in the sport arena.

5.4.3 An example approach to modeling
arousal time curve

To illustrate the possibilities for approaching the development of affect
models introduced above, we will now briefly discuss the method for arousal
time curve modeling that was originally proposed by Hanjalic and Xu in
[Han01] and slightly modified in [Han04]. Although being rather simple,
this method already provides a reasonable correlation between the curve
behavior and the arousal-related aspect of the video content, or, in other
words, the expected amount of excitement that is evoked in the user while
watching the video.

5.4.3.1 A general arousal model

We approach the arousal modeling by considering the function that
models the arousal over the frames k as revealed by the feature i. This
function can be interpreted as one of the elementary components (primitives)
of the arousal time curve. Namely, it is unrealistic to expect that a single
feature can reveal the complete variations of arousal along a video. For
instance, an increase in arousal during a soccer television broadcast is
detectable at some places through the cheering crowd (changes in sound
energy) and at some other places through an increase in shot-change rate
(e.g. a break due to a foul play). Therefore, we model the arousal time curve
A(k) in general as a function of N components

Here, the function F serves to integrate the contributions of all the
components in the overall course of arousal along a video. In order for
the function F to satisfy the criteria of comparability and smoothness, these
criteria need to be satisfied first by each component time function This
requirement can also be justified by the fact that each function is an
(elementary) arousal function by itself.

In order to obtain the component time curves three arousal–related
low-level features were selected:
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The motion component, obtained on the basis of the overall motion
activity measured between consecutive video frames,

The rhythm component, obtained by investigating the changes in
shot lengths along the video,

The sound energy component, obtained in synchronization with the
video frame interval by computing the total energy in the sound
track of a video.

The above features were selected to represent the arousal stimuli
contained in different modalities of video (visual and audio) and those
revealing the influence of video authoring (editing). In this sense, we expect
the contributions to the course of arousal originating from these features to
be largely independent of each other.

5.4.3.2 The motion component

We start the computation of the motion component of the arousal
function (5.1) by computing the motion activity m(k) at each video frame k.
Motion vectors are computed using the standard block-based motion
estimation between two adjacent frames k and k+1. The motion activity
value is then found as the average magnitude of all (B in total) motion
vectors normalized by the maximum possible length of a motion vector

Note that the motion activity values (5.2) are scaled to the range between
0 and 100 % – a range that will be imposed also for other model components
so they can be combined with each other on the same basis, but also for the
resulting arousal levels to be expressed in percentages. In this way, we create
a solid basis for the fulfillment of the Comparability criterion.

In view of the Smoothness criterion, the obtained motion activity time
curve is not directly suitable for being a component of the arousal model.
First, the value (5.2) may quickly fluctuate within the same shot. Second,
motion activity values may fluctuate in different ranges for two consecutive
shots (e.g. total motion activity within a close-up shot is much larger than
that in a shot taken from a large distance) which results in “jumps” of these
values from one range to another at shot boundaries. Third, measuring
motion activity for the consecutive frames will encounter unavoidably the
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high peaks or other noises at shot boundaries and locations of other editing
effects as well. In order to fulfill the Smoothness criterion the m(k) is
convolved with a sufficiently long smoothing window. Hanjalic and Xu use
the Kaiser window of the length and the shape parameter for
this purpose.

Figure 5-5. (a) The raw motion activity and (b) after smoothing has been applied

We demonstrate the effect of the smoothing operation in Figure 5-5,
where a video segment consisting of three consecutive shots of a typical
soccer match is considered. The two shot boundaries can be easily
recognized as the sharp peaks around frames 200 and 300 of the motion
activity function m(k) in Figure 5-5a. The first and the second shot are
characterized by a high motion activity, corresponding to close-up shots of
players running on the field. The third shot was taken by a camera mounted
on a high ground with a wide view of the field, hence the overall motion
activity obtained is rather low initially. The changes toward the end of the
third shot take place when the camera is maneuvered to view the previously
covered part of the field in the course of the game. The first two shots belong
to an exciting segment of a soccer broadcast (goal chance). Starting from the
second shot change, the game becomes stable and the level of excitement
decreases. However, the increase and decrease of a user’s excitement cannot
change abruptly. While a user’s excitement will reach its peak somewhere
during the series of close-up shots, it will start to descend gradually, as the
game becomes stable. Gradual reduction in the level of excitement will
continue after the second shot change since the user needs time to recover
from previous exciting events. Finally, when the course of the game
becomes more dynamical around frame 850, the excitement of the user will
start to rise, though with a certain delay - again due to the inertia of human
affective states. As can be seen from Figure 5-5b, the smoothed motion
activity curve is much more likely to mimic the variations in a user’s
excitement, as described above.
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We adopt the smoothed motion activity curve as the motion component
of the arousal time curve (5.1). We represent this component

analytically as

Here, is the result of the convolution of the curve m(k) with a
smoothing window, that is Scaling the curve

as indicated in (5.3), serves to put the values back inside the
original value range (0-100%).

5.4.3.3 The rhythm component

Similar to the analysis of the motion activity, in the following we aim at
obtaining a curve that is a function of the frame index k and that reveals a
connection between a viewer’s arousal and the time-varying shot lengths.
We start modeling the influence of the shot-change rate on a viewer’s
arousal by defining the function c(k):

Here, p(k) and n(k) are the positions (frame indexes) of the two closest
shot boundaries to the left (beginning of the shot) and right (end of the shot)
of the frame k, respectively, and the parameter is the constant determining
the way the c(k) values are distributed on the scale between 0 and 100 %. As
illustrated by the example in Figure 5-6a, the curve c(k) is typically a step
curve, with each step corresponding to video segment between two shot
boundaries and with the height of each step being inversely related to the
interval between the boundaries: the shorter the interval the higher the value
c(k). Again, due to incompatibility of vertical edges in c(k) with the
Smoothness criterion, we convolve the c(k) curve with the same smoothing
window as in the case of motion activity. Scaling the convolution result back
to the original value range results in the function that we adopt as the rhythm
component of our arousal model (5.1), and that is illustrated by the
example in Figure 5-6b:
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Figure 5-6. (a) An example of the curve c(k), (b) The corresponding curve

5.4.3.4 The sound energy component

As the third component of the arousal model (5.1) the sound energy
contained in the audio track of a program is considered. One energy value is
computed for the time length of each video frame. Thus the number s of
audio samples used to compute this value is determined as the ratio between
the audio sampling frequency (typically 44.1 kHz for CD quality) and the
video frame rate. The power spectrum is computed for each consecutive
segment of the audio signal containing s samples. An equivalent of the
sound energy value e(k) is then computed by adding up all spectral values.

We again apply the same Kaiser window as in previous sections to
smooth out the originally “rough” time curve e(k). However, unlike the other
two arousal components, sound energy is dependent on the volume level at
which the audio track is recorded. Since neglecting this fact would result in
sound energy time curves that are not comparable over different videos, we
proceed as follows. First, we scale the energy time curve obtained after
convolution to the range between 0 and 1. Then, we weight the obtained
curve according to its mean value. If the curve is characterized by only a few
highly distinguishable peaks, then its mean value is lower than in the case
where the curve homogeneously covers the entire value range. Since in the
first case it is likely that the video contains several highly exciting events,
these peaks should play a significant role in shaping the final arousal time
curve. In the second case, however, the presence of exciting events is
uncertain. Then, due to ambiguity related to the recording volume level, the
influence of the energy component on shaping the arousal time curve is kept
limited. With this in mind, with and with W being the
length of the analyzed video in frames, we define the sound energy
component of our arousal model as follows:
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5.4.3.5 Arousal as a weighted average of the components

where (5.6)

Figure 5-7 shows all three arousal components computed for an excerpt
from a soccer match. When compared with the content description of
characteristic segments of this excerpt (see labels), one can see that at the
times of exciting events (goals, goal chances, breaks), a distinguished local
maximum can be found in at least one of the component time curves, as
opposed to less exciting segments. One can also notice that these local
maxima are not necessarily aligned. For instance, in the case of a score, the
following scenario is possible: the spectators first cheer the action (sound
energy peak), then there are cameras zooming in on running players (motion
activity peak) and, finally, there are cameras zooming in on the teams’
benches and the spectators (cut density peak). This fact motivates the
definition of the function F as a weighted average of the three components,
which is then convolved with a sufficiently long smoothing window in order
to merge neighboring local maxima of the components into one peak and so
to compensate for the possible asynchrony of the behavior of the component
time curves at places of exciting events [Han01, Han04]. The result is finally
re-scaled to the 0-100% range:

with (5.7)

Here, are the coefficients weighting the component functions
The convolution is performed again with the Kaiser window. However, as
indicated by the values and this window may have a different length
and shape parameter compared to the window used previously for the three
components.
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5.4.3.6 Model performance and utilization

Having described the example method for modeling the arousal
components and for integrating these components as in (5.7) to form a
complete arousal model, we now proceed to illustrate the performance of the
obtained arousal model on real media data. The choice of test video
sequences was based on two considerations. First, in order to obtain
meaningful results, the sequences selected should be those in which the
changes in arousal are most likely induced by the stimuli depicted by the
low-level features adopted. Second, the sequences selected should be
characterized by the content flow on which an average user is expected to
react in a “standard way” in terms of arousal. For instance, the arousal is
expected to rise when the development of a soccer game goes from the
stationary ball exchange in the middle of the field and finishes via a surprise
fast action with the goal. In the same fashion, the arousal is supposed to
decrease with the stabilization of a situation in an action movie, following a
rapid action event.

Figure 5-7. (a) The component time curves and (b) the resulting arousal time curve obtained
for an excerpt from a soccer match
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Figure 5-8. Arousal time curve obtained for an excerpt from a movie

Figures 5-7 to 5-10 illustrate the model performance on the test sequence
set including excerpts from two different soccer matches (and two different
broadcasters) and from the movies “Saving Private Ryan” and “Jurassic Park
3”. For each test sequence, the same set of parameter values was used: the
pixel block size for motion estimation was selected as 16, the coefficients
were selected as 1/3, and was set to 300. The length and shape parameter
of the Kaiser window used for arousal components were 700 and 5, and
those for the complete arousal model were 1500 and 5, respectively. In each
figure the characteristic segments are labeled to reveal the actual content of
the corresponding video such that the model performance can be judged. In
each figure the reader may observe the behavior of the arousal time curve in
the global sense, and whether it complies with the content development
along various sequence segments. The reader may also check the similarity
of the arousal levels obtained for similar events in different sequences.

Figure 5-9. Arousal time curve obtained for an excerpt from a movie
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Figure 5-10. Arousal time curves obtained for an excerpt from a soccer match

Clearly, a high correlation can be observed between the behavior of the
arousal time curve in each figure and the content development of a test
sequence used. We emphasize, however, that although good results could be
obtained for two different video genres (soccer and movie), it is unrealistic
to assume the constancy of the arousal feature set across a broad scope of
video genres. This is simply due to the fact that the features revealing the
arousal stimuli in one genre may not be present in another genre or may not
be discriminative enough for arousal measurement in that genre.

5.4.4 An example approach to modeling
valence time curve

The Compatibility criterion described in Section 5.4.1 requires that the
affect curve generated through combining the arousal and valence time
curves should cover an area in the valence-arousal coordinate system that
has a parabolic-like shape resembling the 2D affect space (Figure 5-2).
Clearly, this criterion confines that the values of arousal and the absolute
values of valence are related to each other, which means that in general the
range of arousal values determines the range of absolute valence values. We
could therefore start the development of a valence model by defining the
function r(k) that captures this value range dependence [Han04].

Here, k is again the frame index, and a(k), as defined in (5.7), is the arousal
function before smoothing. Similar to the discussion on the arousal model
(5.1), each component in (5.8) models the changes in valence as
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revealed by the feature j, while the function H serves to integrate the
contributions of all the components in the final valence time curve. Clearly,
the values r(k) are determined solely by the values of the arousal, while the
function H only determines the sign of r(k).

The values of H are used again in the next step to compute the variations
of the valence in the value range specified by the arousal. In order for the
valence values to remain in the proper range, the amplitude of these
variations needs to be much smaller than the value of the arousal
determining that range. With this in mind we define the variance function
g(k) as follows:

The number n determines the magnitude of allowable variations of
valence values in the range specified by the arousal. As shown in (5.9), this
magnitude is not allowed to exceed n percent of the maximum arousal value.

We now model the valence time curve as

with (5.10)

The smoothing window used here is the same as the one used for
smoothing the final arousal time curve in (5.7). The main purpose of
smoothing the curve v(k) is to eliminate jumps appeared in the r(k) curve due
to the sign change in (5.8).

As is clear from discussions above, the role of function H is actually
analogous to that of function F in (5.1). Therefore, the search for the proper
form of function H can be done in the similar way as for function F. In the
following, we first describe how to model a component function using
one of the valence-related features – the pitch average – such that it satisfies
the criteria of comparability and smoothness. We then demonstrate the
concept of modeling the valence time curve as explained above based on the
example of the simple curve derived from the pitch-average component.

and
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5.4.4.1 The pitch-average component

We compute the pitch signal using the off-the-shelf software and average
the pitch values temporally over each video segment of length L. This results
in the pitch-average time curve P(k). As studied by Murray and Arnott
[Mur93], the average pitch can be useful in distinguishing between some
positive and negative affective states, such as “happiness” (high pitch
average) and “sadness” (low pitch average).

In order to associate the average pitch value with a corresponding
valence value that may also be negative, we define the following function:

Here N is what we call the “neutral feeling” frequency, and serves to map
the low (high) values of the pitch average to the corresponding negative
(positive) valence values.

In view of the smoothness criterion, the function (5.11) is not directly
suitable to serve as a valence component time curve due to its step-wise
nature. We therefore smooth the values (5.11) using the same Kaiser
window as in the case of the arousal components. The result is the pitch-
average component of the valence time curve:

5.4.4.2 Model performance

The measurement of the affect type (valence) is much more ambiguous
than the measurement of the affect intensity (arousal). We therefore choose
to evaluate the valence model (5.10) in its simplest form, where the function
H is based on one component function only, that is,

and in a controlled situation. The purpose of evaluation in this section
is to prove the concept of

modeling the valence components as shown by the example (5.12),

modeling the valence time curve along the steps (5.8-5.10),

generating the affect curve on the basis of the corresponding arousal
and valence curves, as explained in Section 5.3.2.
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Figure 5-11. (a) The arousal curve obtained for an excerpt from the movie “Saving Private
Ryan”, (b) The valence curve obtained for the same excerpt on the basis of the pitch-average
component (5.12)
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Since we chose as the pitch-average component, we select a test
video sequence such that its affective content can largely be determined on
the basis of the pitch average only. For this purpose we selected an excerpt
from the movie “Saving Private Ryan” where the sound track consists of
male voices that are only sporadically interrupted by noise or music.

Figure 5.11 shows the arousal and valence time curve obtained for the
selected test sequence. Besides the parameters already specified in Section
5.4.3, additional parameters here are the “neutral feeling” frequency N that is
set to 150 Hz [Pic97b], the value of n that is set to 10, and the pitch-average
segment length L that is set to 909 frames. The rather odd value that we used
for L resulted from our attempt to partition the test sequence into the
segments of equal length, which are, at the same time, synchronized with the
segments selected by the off-the-shelf software to compute the pitch. In
order to evaluate the correlation between the obtained arousal and valence
values and the actual content of the sequence, we have labeled different parts
of the sequence to describe their contents in as much detail as possible.
These labels can be found in Table 5-2.

Figure 5-11a shows that the changes in arousal are not that strong. This
was expected as the entire sequence is rather stationary and mainly contains
conversations. A slight increase of the average arousal value in the segment
2, 4 and 7 as compared to the previous segment, is, however, quite correlated
to the actual content development of the sequence along these segments.

The range of the valence values in Figure 5-11b indicates that the valence
time curve is basically a scaled (and mirrored, where negative) version of the
arousal curve, on which the allowed variations modeled using the pitch-
average component are superimposed. The first interesting spot in Figure 5-
11 is the switch of the valence curve from the negative to positive values
around the frame 20000. This switch reveals the change in the prevailing
mood from mostly somber in the first part of the sequence to a “casual”
every-day mood and even some happiness. This is then followed by, again,
expected switch of the curve to the range of negative valence in the segment
8. The course of the obtained valence time curve largely corresponds to
expectations. However, the simplicity of the function H has also lead to
slight imperfections in the obtained curve. Namely, the segments 5 and 6
also contain parts that are characterized by the similar “casual” every-day
mood as in the segment 7. These parts are not properly revealed by the
valence time curve in Figure 5-11b.

We now combine the arousal and valence curve from Figure 5-11 in the
affect curve that provides the complete representation of the affective
content of the video clip under study. The parabolic shape of this curve
shown in Figure 5-12 clearly indicates the compatibility of the obtained
curve with the 2D affect space. As we can read from the curve, the
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prevailing mood of the test sequence is rather somber (low-to-medium
arousal and negative valence) with the exception of one segment that is
characterized by a mid-level arousal and a positive valence.

Figure 5-12. The affect curve obtained by combining the curves from Figure 11a-b for n= 10

5.5 APPLICATIONS

As we mentioned in the introduction to this chapter, the ability to extract
affective content from a video will not only extend the scope of the
possibilities for video indexing and retrieval, but is also likely to provide
valuable information that can be used in the process of personalizing the
video delivery to the user. In this section we will discuss these new
possibilities in more detail.

5.5.1 Automatic video indexing using affective labels

By computing the arousal (A) and valence (V) values from the features
of a given temporal video segment the obtained (A,V) pairs can be mapped
onto a particular area in the 2D affect space. Then, the label characterizing
the affective states in this area can be used to describe the affective content
of this video segment, as illustrated in Figure 5-13. After the labels have
been assigned along a video, it is easy to retrieve the segments characterized
by a particular “mood”, but also to leave them out if found unsuitable for the
audience (censorship). An efficient way of indexing the entire video
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following the procedure in Figure 5-13 is to compute the affect curve for the
entire video first and then to let the video segments be indexed automatically
as we explained in Section 5.3.2 (Figure 5-4).

Figure 5-13. Quantifying the affective aspects of the video content

5.5.2 Highlights extraction

Although the highlights generally stand for the most interesting parts of a
video, the definition of what is “interesting” may strongly vary across
diverse video genres and for different applications. For instance, while a
highlight of a news program is determined by the novelty and impact of the
news (e.g. “breaking news”, “headline news”), the criteria for highlight
extraction from a home video are rather content-dependent, like “where my
baby walked for the first time”. The ability to analyze video at affective level
will broaden the possibilities for highlights extraction in a number of new
application contexts, such as automated movie trailer generation and sport
broadcast pruning.

5.5.2.1 Automated movie trailer generation

Movie producers hope to attract large audience to cinemas or to video on-
demand services by advertising the movies using trailers. A trailer is a
concatenation of movie excerpts that last only for several minutes but are
capable of commanding the attention of a large number of potential cinema
goers and video on-demand users. Analyzing a movie at affective level can
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provide valuable clues about which parts of the movie are most suitable for
being an element of the trailer. This is because emotion plays a primary role
when processing mediated stimuli [Die99]. The emotion (affective content)
influences the attention of a user and his evaluation and memory for the
mediated facts (cognitive content). Consequently, the perception of the
affective content interferes with the perception of the cognitive content and
influences user’s reactions to the cognitive content, such as liking or not-
liking, enjoyment and memory. Further, since memory is one of the most
important factors when creating a trailer, it is worthy to notice that memory
for highly emotional video fragments has been proven to last longer than the
memory for non- or less-emotional video clips [Lan95b, Lan96]. Therefore,
having available the algorithms for video analysis at the affective level, the
creation of movie trailers could be performed fully automatically.

5.5.2.2 Automated pruning of a sport TV broadcast

The idea of automatically creating trailers for movies can easily be
extended to the case of sport programs as well. The sport events advertise
themselves among the TV viewers using the “most touching scenes in the
sport arena” with the objective of selling their commercial blocks as
profitably as possible. However, the availability of the algorithms for
automatically extracting sport program highlights becomes handy also in the
process of pruning a large volume of recorded sport video: only the
segments being worth watching are kept, while the remaining, less
interesting parts are discarded. The sports programs are particularly
interesting objects for pruning as they lack a story line, and as the events
being worth watching (e.g. goals in soccer, home runs in baseball,
touchdowns in football) are sparse and spread over a long period of time.

At this stage it is worthwhile emphasizing that the process of trailer
generation may by much more subtle and complex than pruning. As the
trailer serves to attract people to see a particular program, the video
segments are searched for that are capable of influencing the affective state
of the user correspondingly. In this sense, the process of trailer generation
may involve an analysis of both the arousal and valence components of the
affective video content. In the case of pruning, however, the user eventually
has access to selected program segments only. In order not to discard any
interesting segments, the filtering process should be less selective and
preserve all segments of potential interest to the user.

The challenge of automatically pruning sport television broadcasts has
been pursued widely in the scientific community in the past years [Li03]. An
analysis of the previous work on this subject reveals that most of the
approaches proposed so far are event-based: they are developed for a
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particular sport genre and aim at detecting pre-defined events that are
considered most interesting for that genre. Event detection is approached
either by developing feature-based event models (e.g. [Gon95, Kaw98,
Leo03, Sud98, Uts02, Xie02, Xu03]), by searching for keywords in speech
(e.g. [Cha96]) and closed captions (e.g. [Nit00]), by using MPEG-7
metadata (e.g. [Jai02]) or by involving several of the abovementioned clues
into inter-modal collaboration (e.g. [Bab03, Hua02, Sno03]). Clearly, the
need for reliable event models makes the pruning process technically and
semantically a complex task in many broadcasts. It also requires the
development of a separate pruning algorithm for each particular sport
program genre. Although event detection via keyword spotting may be
performed in a more generic way for different sport program genres, the
composition of the resulting video abstract is limited only to those events,
for which obvious keywords are likely to be found. While this may be the
case for the “goal” and “penalty” events in soccer or “home run” in baseball,
other interesting events, such as a nice action on the net during a tennis game
or a nice move of a goalkeeper in soccer, will probably remain undetected.

An alternative to the approaches discussed above is to search for a single
event that is assumed to accompany an arbitrary highlighting event. For
instance, Pan et al. [Pan01] based the detection of highlights on the detection
of slow-motion segments. They observe namely that the interesting events –
which ever these may be - are often replayed in slow motion immediately
after they occur. Although being more generic than the methods discussed
above, this highlights extraction mechanism may result in a large number of
falsely extracted video segments: interesting events are often replayed in
slow-motion during several later game breaks. Further, several slow-motion
segments may be played after each other, showing the highlighting event
from different camera angles. Similar problems emerge in the attempts to
detect specific audio events, such as “applause”, “cheering crowd” or
“cheering commentator”, that are often seen as indicators of the potential
presence of a highlight. Although rather successful attempts to extract
highlights based on an analysis of audio events alone were reported (e.g.
[Xio03]), Rui et al. [Rui00] observe that such an approach, in general, is
likely to lead to a large number of false alarms. The spectators and the
commentator may, namely, become “loud” for the reasons that have nothing
to do with the sport event considered (e.g. cheering a hot-air balloon that
flies over the stadium). It is, therefore, not surprising that many proposed
methods combine the “cheering” detection with other, in most cases event-
specific clues (e.g. [Cha96, Dag01, Pet02, Rui00]).

A further step toward the development of generic tools for sport-program
pruning is made by the approaches for detecting the high-level sport
program structure. For instance, Li and Sezan [Li01] develop both a
deterministic and probabilistic framework for detecting the “play” segments
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of a sport video. These segments are assumed to contain all the interesting
material of a program, as opposed to less interesting “non-play” segments.
They demonstrate the applicability of their framework to football, baseball
and sumo wrestling. An alternative approach to detecting “play” and “break”
events was proposed by Ekin and Tekalp [Eki03], and was demonstrated on
basketball, football, golf and soccer. However, although being very helpful
in filtering out irrelevant video segments, these structure-oriented
approaches are not suitable for highlights extraction: not all the material
contained in a “play” segment can be considered a highlight. Further, the
detection of structural elements as described above may not be possible in
some sport disciplines, such as swimming or car racing.

Since it is realistic to assume that each highlighting event (e.g. goal,
touchdown, home run, the finals of a swimming competition, or the last 50
meters in a running contest) induces a steady increase in user’s excitement,
we can search for highlights in those video segments that are expected to
excite the user most [Han03], As the expected variations in a user’s
excitement induced by video can be modeled as a function of various non-
content, and thus domain-independent video features, the affective content
modeling provides a basis for developing a generic method for highlights
extraction, independent of a sport program genre and the events contained
there (Figure 5-14).

Figure 5-14. Generic versus domain-specific approach to sports highlights extraction
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5.5.2.3 An example approach to sport program pruning

To illustrate the possibilities for the realization of the generic highlights
extraction scheme in Figure 5-14, we recall the example approach to arousal
modeling presented in Section 5.4.3. There we have shown how the time
curves of three arousal components can be combined together into an arousal
time curve. This curve mimics the influence of all three stimuli on user’s
arousal: there is a visible peak in the arousal time curve wherever at least
one of the components reaches a significant local maximum. Then, given the
arousal time curve A(k) and the maximum abstract length L in frames, the
simplest approach to highlights extraction is to look at the values of the
curve and to extract those video segments that are likely to excite the user
most. To do this, we can draw a horizontal line cutting off the peaks of the
curve in such a way that the number of frames in video segments where the
peaks are found is not larger than L. This simple method for highlights
extraction is illustrated in Figure 5-15. As the extraction process is driven by
the local excitement level only, any event in a sport program may be
included into the abstract, provided that the curve A(k) passes through a
sufficiently high value range during that event. In this way, highlights are
extracted in a generic fashion without the need for event modeling or
artificially limiting the scope of the abstract content.

Figure 5-15. Simple sports highlights extraction using the arousal time curve

In view of the fact that each value of the curve A(k) results from multiple
combined stimuli represented by the component time curves we could
also extract the highlights in a more sophisticated fashion, namely by taking
into account the additional criterion of highlight “strength”. The strength of a
highlight can be defined as the number of component time curves that
rise to a high value range during this highlight. This number is therefore
equivalent to the number of stimuli that have major influence on the
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affective state of the user during a particular sport event, and can be said to
determine the “richness” of the experience of that event: the richer the
experience the stronger (better, more interesting) is the highlight. To ensure
the selectiveness of the highlights extraction process, given the minimum
allowed highlight strength M, only those video segments having the strength
of at least M should be allowed to enter the process in the first place. This
can be done by “filtering” the original time curve A(k): the curve values in
video segments that are likely to be the highlights of the required strength
are left high while all other curve values are pulled down in order not to be
captured by the cut-off line.

Let us consider the time stamp k and the values of the components
computed at that time stamp. We can now rank the values in the
descending order, denote the ranked values by and consider the
elements of the subset As the lower bound of
the value range of all components in the subset is determined by the
value of the minimum of that subset, we can weight the values of
the curves in correspondence to this minimum, that is

with

The ideal behavior of the function f(x) is illustrated by the curve in Figure
5-16. It secures gradual thresholding of the component time curves
depending on the value of the argument As a possible analytical
model for the function f(x) the following expression based on the error
function can be used, which is similar to the one we already introduced in
Chapter 2:

with
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If the minimum of the subset is not high enough, the weighting factor
w(k) is close to zero. Consequently, the components are pulled down,
and therewith also the resulting excitement value A(k). This is not the case
only at those time stamps where the value is sufficiently high,
meaning that the values of all components from the subset are
sufficiently high. There, the value of w(k) is close to one and the effect of
filtering is negligible. Clearly, the filtering process is adaptive, as it is
controlled by the parameter M: the higher the value of M, the more strict is
the filtering of the arousal time curve.

Figure 5-16. Ideal behavior of the function w(k)

By considering the processed components in the model (5.1),
instead of the original components we obtain a filtered version of the
arousal time curve that we will refer to as highlights time curve

The time curve could now serve, instead of the curve A(k), as the
basis for extracting highlights using the methodology explained earlier in
this section. By applying the cut-off line to the highlights time curve
only those video segments will be considered highlights, in which the
excitement values remain high after the filtering process (5.13).
Consequently, the parameter M controlling the filtering process can also be
said to determine the composition of the highlighting video abstract.

Figure 5-17 illustrates the possibilities for practical implementation of the
adaptive highlights extraction method outlined above. While the filtering
process (5.13), the formation of the highlights time curve and the actual
highlights extraction using a cut-off line can be considered the same for all
sport program genres, this is not necessarily true for the feature set used to
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compute the component time curves This, however, is not a problem
as the detection of program genre can be done using, for instance, the side
information accompanying the broadcast (e.g. Electronic Program Guide
(EPG)), or by performing the program genre classification locally, using a
suitable algorithm that can be developed with the techniques we already
discussed in Chapter 4.

Figure 5-17. The possibilities for generic highlights extraction based on affective content
modeling

Finally, let us see on the example of a sport video sequence from Section
5.4.3 (Figure 5-7) how the highlights time curve is related to the original
(non-filtered) arousal time curve, and how useful the highlights time curve is
for highlights extraction. We first consider the case of M=3, where we are
maximally selective when creating the highlighting video abstract, that is,
we are interested in extracting the strongest (richest) highlights only. The
highlights time curve for M=3 is shown in Figure 5-18b together with the
original (non-filtered) arousal time curve A(k). If we look at content labels
characterizing different video segments in Figure 5-18a, we can see that the
highlights time curve in Figure 5-18b provides highly distinguishable peaks
at video segments corresponding to goals. Obviously, the goals appear to be
the only events in a soccer TV broadcast complying with the requirements
that we posed on the strength of the highlights in this case. The horizontal
line in Figure 5-18b provides an abstract of 50 seconds showing the only two
goals contained in the analyzed excerpt, each of them preceded by the action
leading to the goal and succeeded by a number of shots showing the
situation in the stadium, as well as by replays of the action taken from
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different camera angles. The effect of filtering becomes clear when we move
the cut-off line vertically: depending on the line position, only the length of
the extracted video segments will change, but not the composition of the
resulting highlighting video abstract, as it will always consist of the goals
and the actions related to them only, while all other events of the game will
be left out.

Figures 5-18c and 5-18d show the highlights time curves obtained using
the same procedure as above but with weaker requirements posed on the
strength of the highlights to be extracted, namely, with M=2 and M=1,
respectively. Clearly, each reduction of the value of M resulted in an
extension of the scope of extractable video content. In Figure 5-18c, besides
the goals also a goal chance (free kick) and an action resulting in a game
break (foul play) are now considered in the highlights extraction procedure.
In Figure 5-18d, no further events are added to the highlights extraction
base, except that more material is considered related to the “free kick” event
between frames 6000 and 8000. This was also expected as in this video
sequence no additional “exciting” events could be found. However, although
the number of the extractable events is similar for M=2 and M=1, the ratio of
the material extracted from different events will vary in both cases. As the
peaks of the middle two events in Figure 5-18c are lower than the peaks of
the goals, much longer segments will be extracted for the goals relatively to
other two events. This is not the case in Figure 5-18d, where the peaks of all
four events have almost equal height.

5.5.3 Personalized video delivery based on
affective content extraction

The information on the affective video content can be used to enhance
the quality of personalizing the video delivery to the user. The user may
namely like or dislike a program largely depending on the prevailing mood
of that program. We envision in this section two personalization scenarios
that are based on this information.

5.5.3.1 Personalization based on the affective user-profile
generation

In this scenario we assume that video is delivered to the user through a
home video storage system. This system is not only capable of storing a
large number of video hours, but also of processing and analyzing the stored
digital video data, and of learning from its interaction with the user. We
distinguish between two phases of this scenario, the profile-learning and the
profile-matching phase.
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Figure 5-18. Adaptive highlights extraction
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Profile learning

In the first phase a user profile is generated on the basis of previous
program selections of the user. Here, the user is allowed to freely select the
programs to watch over a given period of time. For each of the selected
programs the affect curve and its gravity point are computed. This will result
in a large number of gravity points scattered across the 2D affect space. User
preferences will typically result in a number of clusters of gravity points.
Each cluster can be seen as an “area of interest”. In general, several areas of
interest may emerge, as illustrated in Figure 5-19.

The obtained set of areas of interest can be seen as the affective profile of
the user, as it implicitly represents user’s preferences with respect to the
prevailing mood of a video he or she likes most. This profile is to be
distinguished from the “classical” profile of the user, that generally consists
of facts, such as the number of times a program has been selected (non-
semantic profile), or the list of preferred topics (semantic profile, e.g. in the
case of news archive) [Boa03].

With any change of the preferences, the user will start selecting the
programs again. This will mark the start of a new profile-learning phase. The
change in user’s preferences can best be seen through the shifting of the
areas of interest after a considerable number of new programs have been
selected, and after old areas of interest disappear that were not covered by
newly selected programs to a substantial extent.

Figure 5-19. Personalized video delivery based on the affective profile of the user
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Profile matching

Once the affective profile of the user has been generated, new programs
can be delivered to the user based on the degree of matching between the
prevailing moods of these programs and those belonging to the areas of
interest. The prevailing mood of each incoming program is obtained again
by computing the corresponding affect curve and its gravity point. The
program is delivered to the user if its gravity point is within an area of
interest.

Figure 5-20. Personalized delivery based on affective browsing

5.5.3.2 Personalization through browsing the 2D affect space

An alternative to generating an affective profile of the user is to simply
let the user browse through the 2D affect space. As illustrated in Figure 5-
20, the user can use the remote control to move a pointer across the
parabolic surface. As the labels “calm” and “aroused” for the arousal and
“pleasant’ versus “unpleasant” for the valence are meaningful to the user, a
first selection of the program types to be downloaded in the future can be
done rather easily. For instance, the user moves to the left for horrors and
thrillers, and to the right for comedies. By moving the pointer up or down on
the 2D affect space the preference for more or less exciting programs,
respectively, can be specified.

An additional clue securing the proper specification of the preferences
are the program lists appearing automatically at each pointer location. These
lists include all programs that the user has already seen before and that have
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the prevailing mood corresponding to the affective state of that location. In
this way, the user may check whether he or she is in the right part of the 2D
affect space simply by looking at the programs on each list: “Do I want to
have more programs like these with respect to the prevailing mood?”.

The advantage of this scenario as compared to the previous one, is that
no learning is required. Personalized video delivery can start immediately,
while the confidence in proper selection of preferences will grow with more
and more programs being viewed and included in the program lists.

5.6 REMARKS AND RECOMMENDATIONS

Compared to the topics discussed in previous chapters of this book, the
topic of affective video content analysis is definitely least developed. This is
not surprising in view of high difficulty of the problem addressed here:
extracting emotions, feelings and moods from sounds and pictures. It is,
however, clear that research in this direction is necessary in order to provide
the theoretical and algorithmic basis for realizing many important
applications, which could not be possible by analyzing video at the cognitive
level alone.

While the framework for analyzing a video at the affective level is
reasonably well defined by the valence and arousal axes and the 2D affect
space, little is known about the possibilities to map the low-level information
extracted from video (features) onto the points in the affect space. Although
a large number of audio-visual features have already been related in one way
or another to affective dimensions, these relations are, however, rather vague
and, therefore, difficult to be employed in the development of models for the
arousal and valence time curves. Clearly, a reliable feature pool is needed to
provide the basis for inferring the values of arousal and valence from video
data. Once this pool is available, models for arousal and valence time curves
need to be developed that optimally exploit the information found in
different modalities of video and realistically depict the changes in the type
and intensity of human affective states in time, as evoked by the varying
video content. The development of these models can be approached, for
instance, via primitives, as we showed on the example of arousal and
valence modeling in sections 5.4.3 and 5.4.4. Although the models used as
examples in this chapter are rather simple, the presented results are
promising and can serve as an inspiration for further research in this
direction. More insight into the challenges of affective video content
analysis and the theory (psychology, psychophysiology) that may be useful
for meeting these challenges can be gained from the selected literature listed
below.



182 CHAPTER 5

5.7 REFERENCES AND FURTHER READING

[Ada00]

[Arn83]

[Bab03]

[Boa03]

[Bor01]

[Bra91]

[Bra94]

[Cha96]

[Chu95]

[Col99]

[Dag01]

[Dav64]

[Det97]

[Det00]

Adams, B., Dorai, C., Venkatesh, S.: Novel approach to determining tempo and
dramatic story sections in motion pictures, Proceedings of ICIP 2000, Vol. II,
Vancouver 2000, pp 283-286

Arnheim, R.: Film as art. London: Faber & Faber, 1958/1983

Babaguchi N., Nitta N.: Intermodal collaboration: a strategy for semantic
content analysis for broadcasted sports video, Proc. of IEEE ICIP 2003

Boavida M., Cabaco S., Correia N.: A system for delivering personalized video
content, OOIS 2003 Workshop on Metadata and Adaptability in Web-based
Information Systems, Geneve CH, September 2003

Bordwell D., Thompson K.: Film Art: An Introduction, McGraw-Hill, New
York, 2001

Bradley, M. M. and Lang, P. J.: International affective digitized sounds (IADS):
technical manual and affective ratings. Gainesville, University of Florida,
Center for Research in Psychophysiology, 1991

Bradley, M.: Emotional Memory: A dimensional analysis. In Emotions: Essays
on emotion theory, Hillsdale, NJ: LEA, 1994

Chang Y.-L., Zeng W, Kamel I., Alonso, R.: Integrated image and speech
analysis for content-based video indexing, Proceedings of the Third IEEE
International Conference on Multimedia Computing and Systems, 1996,
Page(s): 306–313

Chung S.-J.: An acoustic and perceptual study on the emotive speech in Korean
and French, in ICPhS, Vol. 1, Session 11.7, pp. 266-269, Stockholm 1995

Colombo C., Del Bimbo A., Pala P.: Semantics in Visual Information Retrieval,
IEEE Multimedia, July-September 1999, pp. 38-53

Dagtas S., Abdel-Mottaleb M.: Extraction of TV highlights using multimedia
features, IEEE Fourth Workshop on Multimedia Signal Processing, 2001,
Page(s): 91 -96

Davitz J.R.: The communication of emotional meaning, McGraw-Hill Book
Company, New York, 1964

Detenber, B.H., Simons, R.F., Bennett, G.G.: Roll ’em!: The effects of picture
motion on emotional responses. Journal of Broadcasting and Electronic Media,
21, 1997, pp 112-126

Detenber B.H.: The emotional significance of color in television presentations,
Mediapsychology, 2, pp 331-355, 2000



AFFECTIVE VIDEO CONTENT ANALYSIS 183

[Die99]

[Eki03]

[Fit92]

[Gar85]

[Gia76]

[Gon95]

[Gra98]

[Gre89]

[Haa88]

[Han01]

[Han03]

[Han04]

[Hop94]

[Hua02]

Dietz, R., Lang, A.: Aefective Agents: Effects of Agent Affect on Arousal,
Attention, Liking and Learning, International Cognitive Technology
Conference, CT’99, 1999

Ekin A., Tekalp A.M.: Robust dominant color region detection and color-based
applications for sports video, Proc. of IEEE ICIP 2003

Fitzgibbons, L., Simmons R.F.: Affective response to color-slide stimuli in
subjects with physical anhedonia: A three-systems analysis, Psychophysiology,
29(6), pp. 613-620, 1992

Gardner M.P.: Mood states and consumer behavior: A critical review, Journal
of Consumer Research, 12, pp. 281-300, December 1985

Giannetti, L. D.: Understanding movies (second edition). Englewood Cliffs, NJ:
Prentice-Hall, 1976

Gong Y., Sin L.T., Chuan C.H., Zhang H., Sakauchi M.: Automatic Parsing of
TV Soccer Programs, ICMCS ‘95, pp. 167 –174, May 1995

Grand, S., Cliff, D.: Creatures: Entertainment software agents with artificial
life, Autonomous Agents and Multi-Agent Systems, 1(1), 1998, pp 39-57

Greenwald, M. K., Cook, E. W., Lang, P. J.: Affective judgment and
psychophysiological response: Dimensional covariation in the evaluation of
pictorial stimuli. Journal of Psychophysiology, 3, 1989, pp 51-64

Haas C.R.: Advertising Practice (Pratique de la Publicité), Bordas, Paris, 1988
(In French)

Hanjalic A., Xu. L.-Q.: User-oriented affective video content analysis, IEEE
Workshop on Content-Based Access of Image and Video Libraries 2001
(CBAIVL 2001), pp. 50 –57, December 2001

Hanjalic A.: Generic approach to highlights extraction from a sport video,
IEEE International Conference on Image Processing, Barcelona, 2003

Hanjalic A. Xu L.-Q.: Affective Video Content Representation and Modeling,
IEEE Transactions on Multimedia, 2004, to appear

Hopkins R., Fletcher J.E.: Electrodermal measurement: Particularly effective
for forecasting message influence on sales appeal, in A. Lang (Eds.): Measuring
psychological responses to media, pp. 113-132, Hillsdale NJ, Lawrence
Erlbaum Associates, 1994

Hua W., Han M., Gong Y.: Baseball scene classification using multimedia
features. Proceedings of IEEE International Conference on Multimedia and
Expo, 2002. ICME ‘02. Volume: 1 , 26-29 Aug. 2002, Page(s): 821 -824 vol.1



184 CHAPTER 5

[Jai02]

[Kaw98]

[Lan80]

[Lan95a]

[Lan95b]

[Lan85]

[Lan96]

[Les97]

[Leo03]

[Li01]

[Li03]

[Mic96]

[Mon81]

Jaimes A., Echigo T., Teraguchi M., Satoh F.: Learning personalized video
highlights from detailed MPEG-7 metadata, IEEE International Conference on
Image Processing (ICIP), Volume 1, 2002

Kawashima, T.; Tateyama, K.; Iijima, T.; Aoki, Y.; Indexing of baseball
telecast for content-based video retrieval Proceedings of International
Conference on Image Processing (ICIP), Volume: 1 , 4-7 Oct. 1998 Page(s):
871-874 vol.1

Lang P.J.: Behavioral treatment and bio-behavioral treatment: Computer
applications, in J.B. Sidowski, J.H. Johnson and T.A. Williams (Eds.):
Technology in mental health care delivery systems, pp.119-137, Norwood NJ:
Ablex, 1980

Lang, P. J.: The network model of emotion: Motivational connections. In R. S.
Wyer & T. K. Srull (Eds.), Advances in social cognition (Vol. 6). Hillsdale, NJ:
Lawrence Erlbaum Associates, 1995

Lang, A. Dhillon, P., Dong, Q: Arousal, Emotion, and Memory for television
messages. Journal of Broadcasting and Electronic Media, 38, 1995, pp 1-15

Lang, P. J. and Greenwald, M. K.: The international affective picture system
slides and technical report. Gainesville, University of Florida, Center for
Research in Psychophysiology, 1985

Lang, A., Newhagen, J., Reeves, B: Negative Video as Structure: Emotion,
attention, capacity, and memory. Journal of Broadcasting and Electronic Media,
40, 1996, pp 460-477

Lester, J. C., Converse, S. A., Kahler, S. E., Barlow, S. T., Stone, B. A., Bhoga,
R.S.: The persona effect: affective impact of animated pedagogical agents, in
Proc. Human Factors Comput. Syst., 1997, pp. 359—366

Leonardi R., Megliorati P., Prandini M.: Semantic indexing of sports program
sequences by audio-visual analysis, Proc. of IEEE International Conference on
Image Processing (ICIP), 2003

Li, B.; Sezan, M.I.: Event detection and summarization in sports video, IEEE
Workshop on Content-Based Access of Image and Video Libraries, 2001.
(CBAIVL), Page(s): 132-138

Li B., Sezan M.I.: Semantic sports video analysis: approaches and new
applications, Proc. of IEEE International Conference on Image Processing
(ICIP), 2003

Microsoft, IntelliSense in Microsoft Office 97. Microsoft Office 97 Whitepaper,
1996

Monaco, J.: How to Read a Film: The Art, Technology, Language, History and
Theory of Film and Media, Oxford University Press, 1981



AFFECTIVE VIDEO CONTENT ANALYSIS 185

[Mur93]

[Nas94]

[Nit00]

[Osg57]

[Pan01]

[Pet02]

[Pic97a]

[Pic97b]

[Pit90]

[Rom95]

[Rui00]

[Rus77]

[Sch81]

[Sch54]

Murray I.R., Arnott J.L: Toward the simulation of emotion in synthetic speech:
A review of the literature on human vocal emotion, Journal of Acoustical
Society of America, 93 (2), pp. 1097-1108, February 1993

Nass, C., Steuer, J. and Tauber, E. R.: Computers Are Social Actors, in
Proceedings of CHI ‘94, Human Factors in Computing Systems. ACM Press,
1994, pp 72-78

Nitta, N., Babaguchi, N., Kitahashi, T.: Extracting actors, actions and events
from sports video - a fundamental approach to story tracking Proceedings. 15th
International Conference on Pattern Recognition, (ICPR), Volume: 4 , Page(s):
718-721

Osgood, C., Suci, G., Tannenbaum, P.: The measurement of meaning. Urbana,
IL: University of Illinois Press, 1957

Pan H., van Beek P., Sezan M.I.: Detection of slow-motion replay segments in
sports video for highlights generation, Proc. IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), 2001

Petkovic, M., Mihajlovic, V., Jonker, W., Djordjevic-Kajan, S.: Multi-modal
extraction of highlights from TV Formula 1 programs, Proceedings of the IEEE
International Conference on Multimedia and Expo 2002 (ICME), Volume: 1,
Page(s): 817-820 vol.1

Picard, R.: Affective Computing, MIT Press, 1997

Picard, R., Cosier, G.: Affective Intelligence – The Missing Link?, BT
Technology Journal, Vol.14, No.4, October 1997, pp 150-161

Pittam J., Gallois C., Callan V.: The long-term spectrum and perceived emotion,
Speech Communication, 9, pp. 177-187, 1990

Romer D.: The Kodak picture exchange, Seminar at MIT Media Lab, April
1995

Rui Y., Gupta A., Acero A.: Automatically extracting highlights for TV baseball
programs, Proc. ACM Multimedia 2000, Los Angeles CA, 2000

Russell, J., & Mehrabian, A.: Evidence for a three-factor theory of emotions.
Journal of Research in Personality, 11, 1977, pp 273-294

Scherer K.R.: Speech and emotional states. Chapter 10 in J.K. Darby (Eds.)
Speech evaluation in psychiatry, pp. 189-220, Grune and Stratton Inc., 1981

Schlosberg H.: Three dimensions of emotion, Psychological Review, 61(2): 81-
88, March 1954



186 CHAPTER 5

[Sim99]

[Sno03]

[Sud98]

[Tos96]

[Uts02]

[Wil69]

[Wil72]

[Xie02]

[Xio03]

[Xu03]

Simons R., Detenber B.H., Roedema T.M., Reiss J.E.: Emotion-processing in
three systems: The medium and the message, Psychophysiology, 36, pp. 619-
627, 1999

Snoek, C.G.M., Worring, M.: Time interval maximum entropy based event
indexing in soccer video Proceedings of the IEEE International Conference on
Multimedia and Expo 2003 (ICME), Volume: 3 , Page(s): 481 -484

Sudhir, G., Lee, J.C.M., Jain, A.K.: Automatic classification of tennis video for
high-level content-based retrieval, Proceedings of the IEEE International
Workshop on Content-Based Access of Image and Video Database 1998.,
Page(s): 81 -90

Tosa N., Nakatsu R.: Life-like communication agent – emotion sensing
character ‘MIC’ and feeling session character ‘MUSE’, in Proceedings of the
IEEE International Conference on Multimedia Computing and Systems
(ICMCS), pp. 12-19, 1996

Utsumi, O., Miura, K., Ide, I., Sakai, S., Tanaka, H.: An object detection method
for describing soccer games from video, Proceedings of IEEE International
Conference on Multimedia and Expo (ICME), Volume: 1 , 26-29 Aug. 2002
Page(s): 45-48 vol.l

Williams C.E., Stevens K.N.: On determining the emotional state of pilots
during flight: An exploratory study, Aerospace Medicine, 40(12): pp. 1369-
1372, December 1969

Williams C.E., Stevens K.N.: Emotions and Speech: Some acoustical
correlates, Journal of Acoustical Society of America, 52(4): pp. 1238-1250,
1972, part 2

Xie L., Chang S.-F., Divakaran, A., Sun H.: Structure analysis of soccer video
with hidden Markov models, Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing 2002 (ICASSP), Volume: 4 ,
Page(s): IV-4096 -IV-4099 vol.4

Xiong, Z., Radhakrishnan, R., Divakaran, A., Huang, T.S.: Audio Events
Detection Based Highlights Extraction from Baseball, Golf and Soccer Games
in a Unified Framework, IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), Vol. 5, pp. 632-635, 2003

Xu G., Ma Y.-F., Zhang H.-J., Yang S.: A HMM based semantic analysis
framework for sports game event detection, Proceedings of IEEE International
Conference on Image Processing (ICIP), 2003



Index

2D affect space, x, 14, 147, 148,
149, 150, 151, 163, 167, 168,
179, 180, 181

3D VAC, 145

Abrupt boundary, viii, 29, 36, 46
Abstract, 14, 76, 78, 131, 149,

151, 171, 173, 175, 176
Abstracting, 3, 104, 140
Affect, x, 9, 14, 143, 144, 145,

146, 147, 148, 149, 150, 151,
152, 154, 155, 163, 165, 167,
168, 169, 179, 180, 181, 183

Affect curve, x, 14, 148, 149,
150, 151, 163, 165, 167, 168,
169, 179, 180

Affective, x, xii, xiii, 8, 9, 11, 14,
15, 131, 143, 144, 145, 146,
147, 149, 150, 151, 152, 153,
154, 157, 165, 167, 168, 169,
170, 172, 174, 176, 177, 179,
180, 181, 182, 183, 184, 185

Affective labels, x, 15, 168
Ambiguous, 92, 93, 165
Annotated, 107

Annotation, 5, 105, 108, 140
Archives, vii, xi, 4, 5, 6
Arousal, x, 14, 145, 147, 148,

149, 150, 151, 152, 154, 155,
156, 158, 159, 160, 161, 162,
163, 164, 165, 166, 167, 168,
170, 173, 175, 176, 180, 181,
183, 184

Arousal model, x, 155, 156, 158,
159, 161, 162, 163, 173, 181

Arousal time curve, x, 149, 155,
158, 159, 161, 162, 163, 164,
173, 175, 176

Attention span, 96
Audio, ix, xi, 4, 6, 7, 10, 14, 51,

53, 62, 86, 91, 92, 93, 94, 95,
96, 97, 99, 100, 102, 103, 104,
110, 113, 115, 122, 131, 137,
138, 139, 140, 141, 145, 156,
159, 171, 181, 184, 186

Audiovisual, 4, 5, 9, 113, 121,
131, 139

Automation, 10, 11

Bayesian, 12, 45, 49, 55, 56, 120,
140



188 INDEX

Bayesian belief network, 120
Block matching, 33
Block-wise, 29, 84
Boundary, viii, ix, 11, 12, 17, 18,

19, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44,
45, 46, 47, 48, 49, 50, 51, 52,
53, 57, 59, 65, 66, 68, 71, 72,
73, 74, 92, 93, 94, 95, 96, 97,
98, 105

Broadcast, x, 8, 10, 12, 34, 51,
59, 100, 101, 108, 109, 113,
121, 122, 123, 126, 129, 136,
138, 144, 154, 155, 157, 169,
170, 176

Broadcasting, 182, 184
Broadcasting channel, 3
Browsing, x, xii, 54, 56, 77, 105,

106, 109, 110, 131, 132, 133,
136, 139, 141, 180

Buffer, 69
Business, vii, xi, 2, 6

Cascaded, 47
Cepstral flux, 96
Cepstral vectors, 96
Clip, ix, 59, 61, 62, 63, 64, 65,

67, 68, 69, 71, 72, 73, 75, 76,
77, 78, 79, 80, 81, 82, 83, 85,
86, 87, 99, 107, 108, 111, 113,
114, 115, 118, 121, 131, 133,
134, 136, 143, 144, 167

Cluster separation, 78, 100
Cluster validity analysis, 78
Clustering, viii, 63, 64, 65, 66, 67,

71, 73, 78, 98, 99, 101, 105,
106, 111, 112, 132, 133, 136,
137, 138, 141

Cognitive, xii, 8, 9, 11, 143, 151,
170, 181, 183

Coherence, 8, 12, 13, 19, 57, 58,
59, 60, 61, 62, 64, 65, 66, 67,
69, 70, 72, 73, 74, 81, 86, 88,
92, 99, 100, 102, 105, 131, 143

Cohesion, 87, 90, 91, 100, 101,
102, 103

Collection frequency, 88
Collocation, 89, 90, 91, 102
Color, 7, 18, 27, 28, 39, 52, 53,

55, 74, 75, 79, 80, 81, 83, 84,
137, 151, 152, 182, 183

Communication, xi, 1, 2, 50, 53,
101, 138, 140, 182, 185, 186

Comparability, 151, 155, 156, 164
Compatibility, 151, 163, 167
Component-HMM, 119
Compression, 1, 50, 53, 54
Computable, 13, 104
Concept, 3, 47, 65, 73, 95, 112,

113, 114, 115, 117, 118, 119,
120, 134, 164, 165

Consistency, 33, 59, 92, 153
Consumer choice, 2
Content label, xii, 107, 108, 109,

113, 114, 143, 176
Content modeling, ix, 113, 114,

121, 130, 131, 135, 172, 176
Control, 26, 145, 147, 154, 180
Cosine measure, 89, 90
Cumulative distribution function,

35
Cut, 17, 18, 19, 20, 22, 28, 30, 36,

37, 38, 44, 45, 46, 47, 52, 54,
55, 95, 99, 136, 160, 174, 175,
177

Decomposition, 91
Detection, 54, 95, 99, 185, 186
Detector, viii, 24, 25, 26, 31, 33,

38, 41, 44, 45, 47, 48, 49, 50,
51, 68, 117

Directional, 8



INDEX 189

Discontinuity, 19, 20, 21, 22, 23,
24, 25, 26, 28, 29, 30, 31, 32,
33, 34, 36, 37, 38, 39, 40, 41,
42, 45, 47, 48, 49, 59, 68, 74

Discriminative, viii, 22, 23, 24,
25, 26, 31, 36, 38, 39, 40, 41,
42, 43, 44, 45, 46, 48, 49, 163

Dissimilarity, 75, 81, 84, 85, 97
Dissolve, 17, 18, 21, 23, 30, 31,

39, 40, 41, 42, 44, 45, 46, 49,
50, 52, 53, 54, 55

Distance, 21, 30, 38, 52, 64, 65,
68, 69, 71, 79, 80, 81, 84, 92,
97, 156

Document, 88
Dominance, 134, 145, 152
Dotplotting, 87
Downwards-parabolic, 23, 26, 42
Dynamic, 53, 131
Dynamic video abstract, 131, 136

EC, 29, 30, 31, 42
ECR, 29, 30, 42
Edge, 7, 29, 30, 33, 42, 55, 90,

105
Edge-based contrast (EC), 29, 30,

31, 42
Edge-change ratio (ECR), 29, 30,

42
Editing, x, 1, 17, 20, 50, 53, 55,

122, 135, 154, 156, 157
Editing-related features, x, 154
Education, vii, xi, 6
Educational, xi, 2, 5
Effect, 17, 18, 19, 20, 21, 46, 49,

53, 64, 65, 67, 69, 92, 147, 152,
157, 175, 177, 184

Efficiency, 6, 10, 11, 18
E-learning, xi, 6
Emotion, 14, 143, 144, 145, 146,

147, 151, 153, 170, 182, 184,
185, 186

Energy, x, 7, 96, 152, 155, 156,
159, 160

Enlargement rule, 92
Entertainment, xi, 2, 5, 183
Episode, 57, 59, 60, 74, 92, 93,

113
Erlang, 46
Event, 9, 46, 74, 99, 105, 112,

115, 116, 117, 119, 131, 136,
138, 139, 140, 143, 144, 151,
154, 161, 171, 172, 173, 174,
177, 184, 186

Event-coupled HMM, 119
Excitement time curve, 149

Factor graphs, 120, 138
Fade group, 17
Fade-in, 17, 19, 26, 30
Fade-out, 17, 26, 30
Fades, 12, 17, 30, 42
False, 35, 45, 49, 120, 128, 171
Fast-forward, viii, 63, 70, 71, 72,

73, 92, 98
Feature, viii, x, 6, 7, 8, 14, 20, 23,

25, 26, 27, 29, 30, 31, 32, 33,
36, 39, 40, 41, 42, 49, 51, 56,
58, 59, 60, 61, 62, 64, 66, 67,
68, 70, 71, 74, 75, 78, 79, 84,
86, 87, 89, 91, 92, 94, 96, 97,
98, 99, 100, 102,103,104, 111,
114, 115, 117, 119, 121, 130,
135, 136, 137, 138, 139, 140,
150, 151, 152, 153, 154, 155,
156, 161, 163, 164, 168, 171,
172, 175, 181, 182, 183

Feeling, 143, 144, 149, 151, 165,
167, 186

Filtering, 4, 123, 139, 150, 170,
172, 174, 175, 177

Fusion, 10, 11



190 INDEX

Generic, 46, 89, 115, 171, 172,
173, 176, 183

Global context, 76, 77
Gradual, 157
Gradual boundary, viii, 38, 49

Hidden Markov model, 49, 105,
117, 118, 129, 130, 135, 137,
138, 186

Hierarchical HMM, 119
Hierarchy, 57, 110, 113, 114, 115,

120, 131, 132, 136
Highlights, x, 1, 4, 9, 15, 149,

169, 170, 171, 172, 173, 175,
176, 177, 178, 182, 183, 184,
185, 186

Histogram, viii, 27, 28, 29, 30,
34, 52, 75, 84

Histogram intersection, 28
Home mass storage system, 3, 9
HSV, 28

IADS, 145, 148, 182
IAPS, 145, 148
Index, 5, 8, 9, 14, 35, 107, 108,

109, 110, 113, 121, 129, 130,
149, 150, 158, 163, 169, 187

Indexed, 5
Indexed archives, 5
Intensity, 84, 153
Intensity variance, 23, 25, 26, 31,

41
Interaction, 6, 77, 108, 110, 111,

130, 146, 177
Inter-frame skip, 21, 39, 40, 47,

48
Internet, 1, 6, 100, 123, 126

Keyframe, ix, 76, 77, 78, 79, 80,
81, 83, 101, 111, 132, 133, 134,
136, 138

Keyword, 123, 171

L*a*b*, 28
L*u*v*, 28, 79, 80
Label, 107, 108, 111, 112, 114,

116, 118, 144, 150, 162, 167,
168

Latent semantic analysis, 87, 100
Lexical, 87, 100, 103
Librarian, 98
Likelihood, 26, 45, 46, 52, 55,

118, 119, 123, 124, 125, 126,
127, 137

Linguistic, 87
Link, 185
Link detection, 87, 100
Linking, viii, 47, 62, 63, 64, 68,

70, 71, 73, 86, 92, 93, 98, 137
Local, 15
Local context, 77, 87
Low energy fraction, 96

Mean, 25, 26, 27, 90, 159
Mechanism, 3, 25, 73, 98, 171
Media, xiii, 1, 4, 15, 51, 53, 54,

99, 104, 138, 141, 147, 161,
182, 183, 184, 185

Memory, 182, 184
Minutes, 6, 126, 169
Missed, 21, 45, 49, 64
Modalities, 10, 99, 119, 154, 156,

181
Modality, 10
Modeling, ix, x, 14, 35, 38, 41,

46, 49, 56, 105, 113, 115, 116,
117, 119, 120, 121, 130, 131,
136, 155, 158, 161, 163, 164,
165, 172, 173, 176, 181, 183

Mood, xii, 4, 14, 143, 144, 146,
149, 152, 167, 168, 177, 179,
180, 181, 183

Morphing, 21
Mosaic, 82, 83, 84, 85



INDEX 191

Motion, viii, x, 8, 21, 26, 27, 28,
29, 30, 31, 32, 33, 34, 38, 39,
41, 48, 49, 50, 51, 55, 56, 59,
77, 78, 113, 114, 115, 116, 136,
137, 138, 139, 140, 152, 154,
156, 157, 158, 160, 162, 171,
182, 185

MPEG, 32, 50, 52, 53, 54, 55, 56,
100, 171, 184

Multiject, 115, 116, 119, 120,
136, 139

Multimodal, xi, 122, 141
Multinet, 119, 120, 136
Multi-segment, 129, 130
Multi-segment video indexing,

ix, 129, 130
Munsell, 28

Network, 1, 49, 54, 89, 90, 119,
184

Non-invasive, 4
Non-sequential, 76, 77

Object, 17, 21, 26, 27, 28, 31, 32,
33, 38, 49, 50, 54, 59, 77, 81,
83, 113, 115, 117, 132, 134,
136, 141, 152, 186

Opponent color space, 28
Overlapping, 34, 63, 73, 74, 87,

92, 99
Overview, vii, 8, 11, 12, 13, 14,

15, 94, 121

Parabolic, 23, 26, 41, 42, 145,
146, 148, 151, 163, 167, 180

Parsable, 13, 60, 61, 62, 75, 107,
113, 129

Parsing, xii, 9, 11, 12, 13, 17, 50,
55, 56, 57, 58, 59, 60, 61, 63,
67, 70, 72, 73, 74, 76, 86, 87,
91, 92, 98, 99, 100, 106, 107,
183

Pattern, xii, 6, 14, 15, 17, 22, 23,
26, 31, 36, 37, 38, 39, 40, 41,
42, 44, 49, 52, 54, 100, 102,
104, 105, 111, 112, 115, 117,
122, 135, 136, 137, 139, 140,
185

Pattern classification, xii, 6, 14,
44, 49, 111, 112, 115, 136

Perceive, 7
Perception, 8, 55, 67, 103, 151,

170
Person, 8, 17, 21, 96, 111, 113,

152, 154
Personality, 146, 185
Personalization, x, xii, 3, 4, 9,

177, 180
Personalize, 144
Personalized video delivery, x,

4, 15, 177, 179, 181
Pixel, 25
Pixel intensity, viii, 25, 26
Poisson, 34, 35
Prevailing mood, 4, 14, 144, 149,

167, 168, 177, 179, 180, 181
Prior, viii, 22, 23, 24, 30, 34, 35,

36, 43, 45, 46, 49, 68, 76, 78,
109, 119, 123, 135

Probability mass function, 34
Professional, xi, 2
Profile learning, 179
Profile matching, 180
Prune, 4
Psychology, xii, 6, 103, 181

Range, 4, 19, 21, 22, 35, 43, 44,
49, 70, 75, 97, 111, 115, 125,
145, 147, 152, 153, 156, 158,
159, 160, 163, 164, 167, 173,
174

Recall, viii, 63, 67, 68, 69, 70, 71,
73, 98, 173

Recommender, xi, 3, 9



192 INDEX

Recording, 3, 107, 159
Redundancy, 76, 77, 78, 105, 132,

136
Representation, xii, 6, 9, 11, 14,

50, 53, 76, 77, 79, 83, 91, 100,
101, 110, 111, 137, 140, 141,
149, 150, 167, 183

Retrieval, xi, xii, 6, 8, 11, 12, 14,
15, 51, 52, 53, 54, 55, 75, 77,
78, 87, 99, 101, 103, 104, 107,
108, 109, 121, 136, 137, 138,
139, 140, 141, 143, 149, 168,
182, 184, 186

Reusable, 6
RGB, 28
Rhythm, x, 52, 152, 156, 158
Richness, 174
Robustness, 10, 11, 26, 98

Safety, 5
Scalability, 5
Scene, ix, xii, 8, 19, 29, 51, 52,

53, 54, 55, 56, 59, 63, 83, 92,
93, 94, 95, 96, 97, 99, 102, 104,
105, 113, 118, 120, 136, 137,
139, 143, 152, 154, 183

Scene transition graph, 63
Screenplay, 21, 49
Segment-merging pyramid, 124,

125
Semantic, ix, xii, 6, 7, 9, 12, 57,

58, 59, 60, 61, 62, 64, 65, 66,
67, 68, 70, 71, 72, 73, 74, 81,
86, 87, 89, 90, 91, 92, 93, 95,
98, 99, 100, 102, 109, 111, 112,
113, 114, 115, 116, 117, 118,
119, 120, 123, 129, 135, 137,
138, 139, 140, 143, 151, 179,
182, 184, 186

Semantic gap, 6, 7, 60, 151
Sequential, 12, 73, 76, 77

Shape, 7, 37, 38, 39, 40, 44, 75,
83, 115, 146, 151, 157, 160,
162, 163, 167

Shape parameter, 37, 75, 157,
160, 162

Short-term memory, 69
Shot, xii, 9, 11, 12, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 40, 41, 42, 43, 44, 45,
46, 48, 49, 50, 51, 52, 53, 54,
56, 57, 58, 59, 66, 68, 71, 72,
73, 74, 76, 77, 80, 83, 86, 87,
92, 98, 102, 105, 111, 112, 116,
117, 122, 154, 155, 156, 157,
158

Shot boundary, 17, 19, 22, 23, 24,
25, 27, 28, 31, 33, 34, 35, 36,
38, 40, 42, 43, 46, 49, 51, 52,
53, 59

Similarity, ix, 28, 34, 41, 64, 65,
66, 68, 69, 70, 71, 73, 75, 76,
77, 78, 81, 85, 86, 87, 89, 90,
91, 93, 99, 102, 104, 113, 132,
162

Similarity link, 64, 70, 86, 93
Site, 113
Sliding window, 37, 38, 39, 40,

41, 44, 45, 95
Smoothness, 31, 32, 151, 155,

156, 158, 164, 165
Sound energy, x, 155, 156, 159,

160
Speech, xi, 4, 6, 7, 10, 50, 51, 55,

56, 74, 86, 87, 92, 94, 102, 103,
104, 105, 119, 123, 137, 138,
152, 153, 154, 171, 182, 185,
186

State, 15, 116, 117, 118, 119, 130,
145, 146, 149, 151, 154, 170,
174, 181, 186

State diagram, 116, 117



INDEX 193

Static video abstract, 136
Stemming, 89, 102
Story context, 7
Streaming, 1
Strength, 38, 70, 90, 173, 176,

177
Structural, 23, 36, 38, 39, 40, 42,

172
Summarize, 3
Summary, 6, 10, 53, 102, 153
Surveillance, xi, 1, 5, 10, 107, 113

Television, xi, 2, 3, 34, 51, 55, 57,
121, 122, 144, 147, 152, 155,
170, 182, 184

Temporal, xii, 7, 9, 11, 14, 17, 19,
22, 23, 25, 26, 31, 44, 45, 50,
51, 54, 56, 57, 59, 60, 64, 65,
66, 68, 69, 70, 86, 101, 107,
110, 113, 117, 119, 122, 128,
129, 130, 131, 135, 141, 143,
149, 168

Temporal attraction, 65, 66, 69
Texture, 7, 75
Threshold, 26, 29, 30, 31, 32, 38,

41, 65, 66, 67, 71, 73, 84, 95,
124

Time-adaptive grouping, viii, 63,
65, 66, 67, 71, 73, 98

Time-constrained clustering,
viii, 63, 64, 65, 67, 71, 73, 98,
105, 111

Topic, xii, 1, 6, 8, 12, 13, 59, 74,
86, 87, 89, 90, 92, 99, 100, 103,
104, 108, 110, 113, 115, 122,
123, 124, 125, 126, 127, 128,
129, 181

Topicality, 87
Topological, 8

Trailer, x, 169, 170
Transition, 19, 20, 21, 38, 40, 41,

42, 43, 47, 48, 50, 53, 54, 56,
63, 77, 118

Transmission, 2, 5
Triangular, 39, 40

User preferences, 3, 144, 179
User profile, 3, 4, 150, 177, 179
User-friendly, xii, 109

Valence, x, 14, 145, 147, 148,
149, 150, 151, 152, 154, 163,
164, 165, 166, 167, 168, 170,
180, 181

Valence time curve, x, 14, 149,
150, 163, 164, 165, 167, 181

Variance, 23, 25, 26, 27, 31, 41,
42, 96, 147, 164

Video poster, 133, 134
Video visualization, 106, 131,

132, 133, 141
Visual features, x, 58, 74, 92, 98,

151, 152, 181
Vocal features, x, 152

Weibull, 35
Weight, 87, 88, 90, 91, 123, 159,

174
Wipe, 17, 20, 44, 45, 51, 52, 54,

56
Word frequency, 88

XYZ, 28

YIQ, 28

Zero-crossing rate, 7, 96


